This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222063 #13 Apr 25 2019 04:45:24 %S A222063 0,0,1,0,1,7,0,1,21,47,0,1,49,282,342,0,1,105,1175,3420,2754,0,1,217, %T A222063 4230,22230,41310,24552,0,1,441,14147,119700,385560,515592,241128,0,1, %U A222063 889,45402,581742,2891700,6530832,6751584,2592720,0,1,1785,142175,2657340 %N A222063 Triangle read by rows: coefficients of third-order hypergeometric-harmonic polynomials. %H A222063 Ayhan Dil and Veli Kurt, <a href="https://www.emis.de/journals/INTEGERS/papers/m38/m38.Abstract.html">Polynomials related to harmonic numbers and evaluation of harmonic number series I</a>, INTEGERS, 12 (2012), #A38. %F A222063 T(n,k) = A008277(n,k)*A000142(k)*H3(k) where H3(k) is defined by g.f.:- log(1-x)/(1-x)^3. - _Michel Marcus_, Feb 09 2013 %e A222063 Triangle begins: %e A222063 0 %e A222063 0 1 %e A222063 0 1 7 %e A222063 0 1 21 47 %e A222063 0 1 49 282 342 %e A222063 0 1 105 1175 3420 2754 %e A222063 .... %o A222063 (PARI) %o A222063 hyp(n,alpha) = {x= y+O(y^(n+1)); gf = - log(1-x)/(1-x)^alpha; polcoeff(gf, n, y);} %o A222063 t(n, k) = {k!*(sum(i=0, k, (-1)^i*binomial(k, i)*i^n)*(-1)^k/k!)*hyp(k,3)}; %o A222063 \\ _Michel Marcus_, Feb 09 2013 %Y A222063 Cf. A222057-A222064. Row sums give A222064. %K A222063 nonn,tabl %O A222063 0,6 %A A222063 _N. J. A. Sloane_, Feb 08 2013 %E A222063 More terms from _Michel Marcus_, Feb 09 2013