This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222068 #81 Dec 24 2024 09:38:08 %S A222068 6,1,6,8,5,0,2,7,5,0,6,8,0,8,4,9,1,3,6,7,7,1,5,5,6,8,7,4,9,2,2,5,9,4, %T A222068 4,5,9,5,7,1,0,6,2,1,2,9,5,2,5,4,9,4,1,4,1,5,0,8,3,4,3,3,6,0,1,3,7,5, %U A222068 2,8,0,1,4,0,1,2,0,0,3,2,7,6,8,7,6,1,0,8,3,7,7,3,2,4,0,9,5,1,4,4,8,9,0,0 %N A222068 Decimal expansion of (1/16)*Pi^2. %C A222068 Conjectured to be density of densest packing of equal spheres in four dimensions (achieved for example by the D_4 lattice). %C A222068 From _Hugo Pfoertner_, Aug 29 2018: (Start) %C A222068 Also decimal expansion of Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1), where d(n) is the number of divisors of n A000005(n). %C A222068 Ramanujan's question 770 in the Journal of the Indian Mathematical Society (VIII, 120) asked "If d(n) denotes the number of divisors of n, show that d(1) - d(3)/3 + d(5)/5 - d(7)/7 + d(9)/9 - ... is a convergent series ...". %C A222068 A summation of the first 2*10^9 terms performed by _Hans Havermann_ yields 0.6168503077..., which is close to (Pi/4)^2=0.616850275... %C A222068 (End) %C A222068 From _Robert Israel_, Aug 31 2018: (Start) %C A222068 Modulo questions about rearrangement of conditionally convergent series, which I expect a more careful treatment would handle, Sum_{k>=0} (-1)^k*d(2*k+1)/(2*k+1) should indeed be Pi^2/16. %C A222068 Sum_{k>=0} (-1)^k d(2k+1)/(2k+1) %C A222068 = Sum_{k>=0} Sum_{2i+1 | 2k+1} (-1)^k/(2k+1) %C A222068 (letting 2k+1=(2i+1)(2j+1): note that k == i+j (mod 2)) %C A222068 = Sum_{i>=0} Sum_{j>=0} (-1)^(i+j)/((2i+1)(2j+1)) %C A222068 = (Sum_{i>=0} (-1)^i/(2i+1))^2 = (Pi/4)^2. (End) %C A222068 Volume bounded by the surface (x+y+z)^2-2(x^2+y^2+z^2)=4xyz, the ellipson (see Wildberger, p. 287). - _Patrick D McLean_, Dec 03 2020 %D A222068 S. D. Chowla, Solution and Remarks on Question 770, J. Indian Math. Soc. 17 (1927-28), 166-171. %D A222068 J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix. %D A222068 Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 507. %D A222068 S. Ramanujan, Coll. Papers, Chelsea, 1962, Question 770, page 333. %D A222068 G. N. Watson, Solution to Question 770, J. Indian Math. Soc. 18 (1929-30), 294-298. %H A222068 Vincenzo Librandi, <a href="/A222068/b222068.txt">Table of n, a(n) for n = 0..10000</a> %H A222068 B. C. Berndt, Y. S. Choi and S. Y. Kang, <a href="https://www.researchgate.net/publication/2575787">The problems submitted by Ramanujan to the Journal of Indian Math. Soc.</a>, in: Continued fractions, Contemporary Math., 236 (1999), 15-56 (see Q770, JIMS VIII). %H A222068 J. H. Conway and N. J. A. Sloane, <a href="https://doi.org/10.1007/BF02574051">What are all the best sphere packings in low dimensions?</a>, Discr. Comp. Geom., 13 (1995), 383-403. %H A222068 Mathematics StackExchange, <a href="https://math.stackexchange.com/questions/2903015/sum-k-1k-frac-tau2k12k1">Sum_k (-1)^k tau(2k+1)/(2k+1)</a>. %H A222068 G. Nebe and N. J. A. Sloane, <a href="http://www.math.rwth-aachen.de/~Gabriele.Nebe/LATTICES/D4.html">Home page for D_4 lattice</a>. %H A222068 N. J. A. Sloane and Andrey Zabolotskiy, <a href="/A093825/a093825_1.txt">Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural)</a>. %H A222068 N. J. Wildberger, <a href="https://www.researchgate.net/publication/266738365">Divine Proportions: Rational Trigonometry to Universal Geometry</a>, Wild Egg Books, Sydney 2005. %H A222068 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>. %F A222068 Equals A003881^2. - _Bruno Berselli_, Feb 11 2013 %F A222068 Equals A123092+1/2. - _R. J. Mathar_, Feb 15 2013 %F A222068 Equals Integral_{x>0} x^2*log(x)/((1+x)^2*(1+x^2)) dx. - _Jean-François Alcover_, Apr 29 2013 %F A222068 Equals the Bessel moment integral_{x>0} x*I_0(x)*K_0(x)^3. - _Jean-François Alcover_, Jun 05 2016 %F A222068 Equals Sum_{k>=1} zeta(2*k)*k/4^k. - _Amiram Eldar_, May 29 2021 %e A222068 0.6168502750680849136771556874922594459571... %t A222068 RealDigits[N[Gamma[3/2]^4, 104]] (* _Fred Daniel Kline_, Feb 19 2017 *) %t A222068 RealDigits[N[Pi^2/16, 100]][[1]] (* _Vincenzo Librandi_, Feb 20 2017 *) %t A222068 Integrate[Boole[(x+y+z)^2-2(x^2+y^2+z^2)>4x y z],{x,0,1},{y,0,1},{z,0,1}] (* _Patrick D McLean_, Dec 03 2020 *) %o A222068 (PARI) (Pi/4)^2 \\ _Charles R Greathouse IV_, Oct 31 2014 %o A222068 (Magma) pi:=Pi(RealField(110)); Reverse(Intseq(Floor((1/16)*10^100*pi^2))); // _Vincenzo Librandi_, Feb 20 2017 %Y A222068 Cf. A000005. %Y A222068 Related constants: A020769, A020789, A093766, A093825, A222066, A222067, A222069, A222070, A222071, A222072, A260646. %K A222068 nonn,cons %O A222068 0,1 %A A222068 _N. J. A. Sloane_, Feb 10 2013