A222070 Decimal expansion of (1/144)*3^(1/2)*Pi^3.
3, 7, 2, 9, 4, 7, 5, 4, 5, 5, 8, 2, 0, 6, 4, 9, 3, 9, 5, 6, 3, 4, 7, 7, 5, 5, 8, 6, 7, 9, 9, 5, 8, 1, 0, 6, 3, 9, 3, 6, 6, 4, 7, 9, 7, 2, 6, 8, 3, 8, 7, 3, 6, 3, 1, 1, 1, 4, 0, 4, 0, 6, 5, 5, 9, 7, 2, 8, 3, 1, 7, 2, 0, 2, 9, 6, 8, 3, 2, 1, 9, 5, 2, 2, 5, 2, 6, 7, 2, 1, 6, 3, 5, 3, 4, 0, 5, 4, 2, 7, 6
Offset: 0
Examples
0.3729475455820649395634775586799581063936647972683873631...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer, 3rd. ed., 1998. See p. xix.
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 8.7, p. 507.
Links
- J. H. Conway and N. J. A. Sloane, What are all the best sphere packings in low dimensions?, Discr. Comp. Geom., 13 (1995), 383-403.
- G. Nebe and N. J. A. Sloane, Home page for E_6 lattice.
- N. J. A. Sloane and Andrey Zabolotskiy, Table of maximal density of a packing of equal spheres in n-dimensional Euclidean space (some values are only conjectural).
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Mathematica
RealDigits[Sqrt[3]*Pi^3/144, 10, 120][[1]] (* Amiram Eldar, Jun 28 2023 *)
-
PARI
Pi^3*sqrt(3)/144 \\ Charles R Greathouse IV, Oct 31 2014
Comments