cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222087 Numbers n for which A222084(n)= A222084(A222085(n)).

Original entry on oeis.org

1, 2, 6, 14, 15, 20, 22, 24, 33, 38, 46, 49, 51, 52, 62, 63, 86, 87, 91, 92, 93, 95, 118, 119, 121, 141, 142, 143, 145, 147, 148, 153, 158, 159, 165, 166, 169, 183, 198, 206, 210, 215, 217, 219, 244, 247, 249, 253, 262, 267, 270, 278, 279, 286, 287, 295, 301
Offset: 1

Views

Author

Paolo P. Lava, Feb 13 2013

Keywords

Comments

Similar to A037197 but using tau#(n), number of the least divisors of n whose LCM is equal to n, as defined in A222084, and sigma#(n), sum of the least divisors of n whose LCM is equal to n, as defined in A222085: tau#(n)=tau#(sigma#(n)).
If we add also the restriction tau(n)=tau(sigma(n)) we have: 2, 52, 1525, 83667, 116162,…

Examples

			n=20; tau#(20)=4, sigma#(20)=12 and tau#(sigma#(20))=tau#(12)=4.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A222087:=proc(q)
    local a,b,c,j,n,t,v;
    print(1);
    for n from 2 to q do
      a:=ifactors(n)[2]; b:=nops(a); c:=0; v:=0;
      for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
      a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
      for j from 1 to b do v:=v+a[j]; if a[j]=c then break; fi; od; t:=j;
      a:=ifactors(v)[2]; b:=nops(a); c:=0;
      for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
      a:=op(sort([op(divisors(v))])); b:=nops(divisors(v));
      for j from 1 to b do if a[j]=c then break; fi; od; if t=j then print(n);
    fi; od; end:
    A222087(10000000000);