cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222088 Numbers n for which A222085(n)=A222085(n+1).

Original entry on oeis.org

5, 23, 44, 84, 132, 185, 335, 368, 1342, 2226, 3354, 4726, 7359, 7598, 8436, 10234, 12123, 18078, 18744, 19848, 20492, 20922, 21823, 21902, 23218, 24069, 24221, 31678, 36510, 36849, 40235, 45046, 46916, 49356, 49769, 50560, 51780, 52716, 53079, 59942, 60150
Offset: 1

Views

Author

Paolo P. Lava, Feb 13 2013

Keywords

Comments

Like A002961 but using sigma#(n), sum of the least divisors of n whose LCM is equal to n, as defined in A222085, instead of sigma(n):
sigma#(n)=sigma#(n+1).

Examples

			n=44; sigma#(44)=18 and sigma#(45)=18.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A222088:=proc(q)
    local a,b,c,d,j,n,t,v;
    d:=1;
    for n from 2 to q do
      a:=ifactors(n)[2]; b:=nops(a); c:=0; v:=0;
      for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od;
      a:=op(sort([op(divisors(n))])); b:=nops(divisors(n));
      for j from 1 to b do v:=v+a[j]; if a[j]=c then break; fi; od;
      if d=v then print(n-1); fi; d:=v; od; end:
    A222088(1000000);
  • Mathematica
    s[n_] := Module[{sum=0, L=1}, Do[sum+=d; L = LCM[L, d]; If[L == n, Break[]], {d, Divisors[n]}]; sum]; s1=1; seq={}; Do[s2=s[n]; If[s1==s2, AppendTo[seq, n-1]]; s1=s2, {n, 2, 10^4}]; seq (* Amiram Eldar, Nov 05 2019 *)