This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222089 #14 Jan 19 2019 12:46:16 %S A222089 1,2,4,8,16,24,48,96,192,384,480,768,960,1920,3840,5760,7680,11520, %T A222089 19440,23040,26880,46080,53760,80640,107520,161280,215040,322560, %U A222089 612360,645120,967680,1224720,1290240,1935360,2580480,3870720,5160960,6451200,7096320 %N A222089 Where records occur in A222084. %C A222089 Like A002182 but using tau#(n), as defined in A222084, instead of tau(n). %e A222089 tau#(8)=4 and not until n=16 this value is overtaken: tau#(16)=5. %p A222089 with(numtheory); %p A222089 A222089:=proc(q) %p A222089 local a,b,c,j,n,t; %p A222089 t:=0; %p A222089 for n from 1 to q do %p A222089 a:=ifactors(n)[2]; b:=nops(a); c:=0; %p A222089 for j from 1 to b do if a[j][1]^a[j][2]>c then c:=a[j][1]^a[j][2]; fi; od; %p A222089 a:=op(sort([op(divisors(n))])); b:=nops(divisors(n)); %p A222089 for j from 1 to b do if a[j]=c then break; fi; od; %p A222089 if j>t then t:=j; print(n); fi; %p A222089 od; end: %p A222089 A222089(10000000000); %t A222089 f[n_]:= Module[{d = Divisors[n], k = 1}, While [LCM@@d[[1;;k]] != n, k++]; k]; fm=0; s={}; Do[f1=f[n]; If[f1>fm, fm=f1; AppendTo[s,n]], {n, 1, 10000}]; s (* _Amiram Eldar_, Jan 19 2019 *) %o A222089 (PARI) f(n) = {my(d = divisors(n), k = 1); while (lcm(vector(k, j, d[j])) != n, k++); k; } \\ A222084 %o A222089 lista(nn) = {my(m=0, nm); for( n=1, nn, if ((nm=f(n)) > m, print1(n, ", "); m = nm););} \\ _Michel Marcus_, Jan 19 2019 %Y A222089 Cf. A000005, A000961, A001358, A003418, A005179, A024619, A034444, A077610, A222084, A222085. %K A222089 nonn %O A222089 1,2 %A A222089 _Paolo P. Lava_, Feb 13 2013 %E A222089 a(2) inserted and a(32)-a(39) added by _Amiram Eldar_, Jan 19 2019