This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222114 #13 Dec 06 2018 16:34:59 %S A222114 2,5,5,13,19,29,31,37,37,37,61,61,61,89,97,97,97,109,131,139,149,157, %T A222114 157,157,173,181,193,193,193,193,241,241,241,271,271,271,271,317,331, %U A222114 331,331,349,349,367,367,367,397,397,397,397,397,397,457,457,457,457,457,457,523,523 %N A222114 Least integer m>1 such that 6*p_k*(p_k-1) (k=1,...,n) are pairwise incongruent modulo m, where p_k denotes the k-th prime. %C A222114 Conjecture: For each n=3,4,..., a(n) is the first prime p>=p_n dividing none of those p_i+p_j-1 (1<=i<j<=n). %H A222114 Zhi-Wei Sun, <a href="/A222114/b222114.txt">Table of n, a(n) for n = 1..10000</a> %H A222114 Zhi-Wei Sun, <a href="https://doi.org/10.1016/j.jnt.2013.02.003">On functions taking only prime values</a>, J. Number Theory, 133 (2013), 2794-2812. %e A222114 a(2)=5 since 6*p_1*(p_1-1)=12 and 6*p_2*(p_2-1)=36 are incongruent modulo 5 but 12 is congruent to 36 modulo any of 2, 3, 4. %t A222114 R[n_,m_]:=Union[Table[Mod[6Prime[k](Prime[k]-1),m],{k,1,n}]] %t A222114 s=2 %t A222114 Do[Do[If[Length[R[n,m]]==n,s=m;Print[n," ",m];Goto[aa]],{m,s,n^2}]; %t A222114 Print[n];Label[aa];Continue,{n,1,100}] %Y A222114 Cf. A000040, A208643, A181901. %K A222114 nonn %O A222114 1,1 %A A222114 _Zhi-Wei Sun_, May 13 2013