cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222131 Decimal expansion of the imaginary part of Pi^i, where i=sqrt(-1).

This page as a plain text file.
%I A222131 #13 Mar 26 2013 03:57:27
%S A222131 9,1,0,5,9,8,4,9,9,2,1,2,6,1,4,7,0,7,0,6,0,0,4,4,5,1,4,2,3,6,8,7,7,4,
%T A222131 7,4,5,1,4,9,2,9,0,5,3,3,7,7,5,2,0,2,0,7,1,9,6,1,6,4,2,7,9,5,5,9,3,4,
%U A222131 5,6,9,3,5,7,5,9,3,1,7,9,8,1,5,9,4,6,4
%N A222131 Decimal expansion of the imaginary part of Pi^i, where i=sqrt(-1).
%H A222131 Vincenzo Librandi, <a href="/A222131/b222131.txt">Table of n, a(n) for n = 0..5000</a>
%F A222131 Equals sin(log(Pi)) = (Pi^i-1/Pi^i)/(2*i).
%e A222131 0.910598499212614707060044514236877474514929053377520207196164279559...
%t A222131  RealDigits[Im[Pi^I], 10, 90][[1]] (* or *) RealDigits[Sin[Log[Pi]], 10, 90][[1]]
%o A222131 (Maxima) fpprec:90; ev(bfloat(imagpart(%pi^%i)));
%Y A222131 Cf. A053510, A049469 (imaginary part of e^i), A222130 (real part of Pi^i).
%K A222131 nonn,cons
%O A222131 0,1
%A A222131 _Bruno Berselli_, Feb 08 2013