This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222132 #59 Feb 08 2025 03:43:07 %S A222132 2,5,6,1,5,5,2,8,1,2,8,0,8,8,3,0,2,7,4,9,1,0,7,0,4,9,2,7,9,8,7,0,3,8, %T A222132 5,1,2,5,7,3,5,9,9,6,1,2,6,8,6,8,1,0,2,1,7,1,9,9,3,1,6,7,8,6,5,4,7,4, %U A222132 7,7,1,7,3,1,6,8,8,1,0,7,9,6,7,9,3,9,3,1,8,2,5,4,0,5,3,4,2,1,4,8,3,4,2,2,7 %N A222132 Decimal expansion of sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... )))). %C A222132 Sequence with a(1) = 1 is decimal expansion of sqrt(4 - sqrt(4 - sqrt(4 - sqrt(4 - ... )))) = A222133. %C A222132 Because 17 == 1 (mod 4), the basis for integers in the real quadratic number field K(sqrt(17)) is <1, omega(17)>, where omega(17) = (1 + sqrt(17))/2. - _Wolfdieter Lang_, Feb 10 2020 %C A222132 This is the positive root of the polynomial x^2 - x - 4, with negative root -A222133. - _Wolfdieter Lang_, Dec 10 2022 %C A222132 It is the spectral radius of the diamond graph (see Seeger and Sossa, 2023). - _Stefano Spezia_, Sep 19 2023 %C A222132 c^n = A006131(n) + A006131(n-1) * d, where c = (1 + sqrt(17))/2 and d = (-1 + sqrt(17))/2. - _Gary W. Adamson_, Nov 25 2023 %C A222132 c^n = A052923(n) + A006131(n-1) * c. Also for negative n. - _Wolfdieter Lang_, Nov 27 2023 %C A222132 The effective degree of maximal entropy random walk on the barred-square graph (see Burda et al.). - _Stefano Spezia_, Feb 07 2025 %H A222132 J. Burda, J. Duda, J. M. Luck, and B. Waclaw, <a href="https://www.actaphys.uj.edu.pl/R/41/5/949">The Various Facets of Random Walk Entropy</a>, Acta Phys. Pol. B 41, 949-987 (2010). See pp. 964, 969. %H A222132 Alberto Seeger and David Sossa, <a href="https://ajc.maths.uq.edu.au/pdf/87/ajc_v87_p258.pdf">Infinite families of connected graphs with equal spectral radius</a>, Australas. J. Combin. 87 (2) (2023), 258-276. See pp. 260 and 263. %F A222132 Closed form: (sqrt(17) + 1)/2 = A178255 - 1 = A082486 - 2. %F A222132 sqrt(4 + sqrt(4 + sqrt(4 + sqrt(4 + ... )))) - 1 = sqrt(4 - sqrt(4 - sqrt(4 - sqrt(4 - ... )))). See A222133. %e A222132 2.561552812808830274910704... %p A222132 Digits:=140: %p A222132 evalf((sqrt(17)+1)/2); # _Alois P. Heinz_, Sep 19 2023 %t A222132 RealDigits[(1 + Sqrt[17])/2, 10, 130] %Y A222132 Cf. A222133, A178255, A082486. %Y A222132 Cf. A006131, A052923. %K A222132 nonn,cons,easy %O A222132 1,1 %A A222132 _Jaroslav Krizek_, Feb 08 2013