cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A222166 Number of nX5 0..4 arrays with entries increasing mod 5 by 0, 1 or 2 rightwards and downwards, starting with upper left zero.

Original entry on oeis.org

81, 4913, 317259, 20780181, 1366395515, 89948464453, 5923189816253, 390086038882651, 25690815631493191, 1691995329032459285, 111434983000652039093, 7339124863989795685471, 483355986017042494039859
Offset: 1

Views

Author

R. H. Hardin Feb 10 2013

Keywords

Comments

Column 5 of A222169

Examples

			Some solutions for n=3
..0..0..1..1..3....0..0..1..2..4....0..0..1..2..3....0..0..1..2..2
..1..1..1..3..4....1..1..3..4..1....1..1..2..3..3....0..1..1..2..4
..1..2..2..3..0....1..3..0..1..3....3..3..4..0..0....2..2..2..2..4
		

Formula

Empirical: a(n) = 115*a(n-1) -4157*a(n-2) +69117*a(n-3) -595705*a(n-4) +2449306*a(n-5) -240335*a(n-6) -43350087*a(n-7) +178528425*a(n-8) -183199822*a(n-9) -751284432*a(n-10) +2871335435*a(n-11) -3549608757*a(n-12) -650892687*a(n-13) +7285361378*a(n-14) -9372087568*a(n-15) +5616780205*a(n-16) -1330498112*a(n-17) -261001088*a(n-18) +232979629*a(n-19) -45081325*a(n-20) -1230938*a(n-21) +1537784*a(n-22) -190656*a(n-23) +8208*a(n-24) -108*a(n-25)

A222167 Number of nX6 0..4 arrays with entries increasing mod 5 by 0, 1 or 2 rightwards and downwards, starting with upper left zero.

Original entry on oeis.org

243, 31307, 4380445, 625649047, 89948464453, 12961320464027, 1869223526083263, 269651329420019349, 38903706021233668197, 5613019387964005463679, 809857047207692689731131, 116848319343974137914103093
Offset: 1

Views

Author

R. H. Hardin Feb 10 2013

Keywords

Comments

Column 6 of A222169

Examples

			Some solutions for n=3
..0..0..1..1..3..4....0..0..0..1..2..2....0..0..1..1..2..4....0..0..0..1..3..4
..0..0..1..2..3..0....0..0..2..2..2..4....0..0..1..2..4..1....0..0..1..1..3..4
..1..1..1..2..4..1....1..2..3..4..4..1....0..1..2..2..4..1....1..1..1..2..3..4
		

Formula

Empirical: a(n) = 324*a(n-1) -39638*a(n-2) +2563357*a(n-3) -99678028*a(n-4) +2422898292*a(n-5) -34567057037*a(n-6) +163766577224*a(n-7) +3953924057449*a(n-8) -93675129477373*a(n-9) +854871679192289*a(n-10) -1010373911023728*a(n-11) -64538210724303463*a(n-12) +764374153831286079*a(n-13) -3535065266008603304*a(n-14) -6650643116239888763*a(n-15) +199768366558925441548*a(n-16) -1284148298178750659633*a(n-17) +3495370310405908549678*a(n-18) +5139427984716424810557*a(n-19) -82029696703016595502402*a(n-20) +302943529549060965986102*a(n-21) -320615792113076602489829*a(n-22) -1657115306226758776142290*a(n-23) +8068597001512785547875111*a(n-24) -13376217033818619829173627*a(n-25) -9007290254306026204266458*a(n-26) +87525051383286874503714054*a(n-27) -162580189876993465142148189*a(n-28) +23526211232093279356308963*a(n-29) +471208575610332879083549054*a(n-30) -918944556261933248058181605*a(n-31) +402135296399868083040981818*a(n-32) +1334981348496023848871530178*a(n-33) -2739540886500718334150601911*a(n-34) +1609967371243683762919217023*a(n-35) +1882070046189479230490753891*a(n-36) -4415531565390270910566613371*a(n-37) +3085987321444282689953699174*a(n-38) +916894807671605192280872310*a(n-39) -3639508264916860485380515902*a(n-40) +2970759642505242646432741014*a(n-41) -466131808362506395905349106*a(n-42) -1230709325386156350054319773*a(n-43) +1255759127222850231908023237*a(n-44) -505110331437242495850314616*a(n-45) -31481521623588192528299729*a(n-46) +140514212979011798478024679*a(n-47) -65945478796808695137450941*a(n-48) +5726585916010713017059660*a(n-49) +7470898741842649706262107*a(n-50) -3412956298232072922390919*a(n-51) +262494321509038838681984*a(n-52) +252280220540757965905947*a(n-53) -85247779462303361462547*a(n-54) +942599705828866593645*a(n-55) +5083312623447553525866*a(n-56) -934266517778337886983*a(n-57) -88236191430021863513*a(n-58) +47794432036883982587*a(n-59) -2650969818401554694*a(n-60) -1032043188102588840*a(n-61) +146160755946991318*a(n-62) +8298202145933886*a(n-63) -2578547059692528*a(n-64) +30285581771328*a(n-65) +20074979570912*a(n-66) -760305563920*a(n-67) -59583322016*a(n-68) +2714449792*a(n-69) +23077376*a(n-70)

A222168 Number of nX7 0..4 arrays with entries increasing mod 5 by 0, 1 or 2 rightwards and downwards, starting with upper left zero.

Original entry on oeis.org

729, 199497, 60481881, 18838482047, 5923189816253, 1869223526083263, 590771311004409091, 186831129401198761761, 59100748356892786911715, 18697545591371281608525201, 5915566903646796343481287921
Offset: 1

Views

Author

R. H. Hardin Feb 10 2013

Keywords

Comments

Column 7 of A222169

Examples

			Some solutions for n=3
..0..0..0..1..1..2..4....0..0..0..1..1..3..3....0..0..0..0..1..1..3
..0..0..0..1..3..4..1....0..0..0..2..3..3..3....0..0..0..2..3..3..0
..0..0..1..3..0..1..1....0..0..1..3..3..4..0....0..1..1..3..3..3..0
		
Showing 1-3 of 3 results.