This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222187 #20 Nov 30 2023 12:26:13 %S A222187 3,7,13,34,78,237,687,2299,7685,27190,96909,353384,1296858,4808707, %T A222187 17920860,67169299,252745368,954677597,3617214681,13744852240, %U A222187 52359294790,199915018057,764884036743,2932046213314,11259024569838,43303903226962,166800088109829 %N A222187 Number of toroidal n X 2 binary arrays, allowing rotation and/or reflection of the rows and/or the columns. %H A222187 Michael De Vlieger, <a href="/A222187/b222187.txt">Table of n, a(n) for n = 1..1667</a> %H A222187 S. N. Ethier, <a href="https://arxiv.org/abs/1301.2352">Counting toroidal binary arrays</a>, arXiv preprint arXiv:1301.2352 [math.CO], 2013. %H A222187 S. N. Ethier, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Ethier/ethier2.html">Counting toroidal binary arrays</a>, J. Int. Seq. 16 (2013) #13.4.7. %H A222187 Peter Kagey and William Keehn, <a href="https://arxiv.org/abs/2311.13072">Counting tilings of the n X m grid, cylinder, and torus</a>, arXiv:2311.13072 [math.CO], 2023. See p. 3. %t A222187 b1[m_, n_] := Sum[EulerPhi[c]*EulerPhi[d]*2^(m*n/LCM[c, d]), {c, Divisors[ m]}, {d, Divisors[n]}]/(4*m*n); %t A222187 b2a[m_, n_] := If[OddQ[m], 2^((m+1)*n/2)/(4n), (2^(m*n/2) + 2^((m+2)*n/2))/(8n)]; %t A222187 b2b[m_, n_] := DivisorSum[n, If[# >= 2, EulerPhi[#]*2^((m*n)/#), 0]&]/(4n); %t A222187 b2c[m_, n_] := If[OddQ[m], Sum[If[OddQ[n/GCD[j, n]], 2^((m+1)*GCD[j, n]/2) - 2^(m*GCD[j, n]), 0], {j, 1, n-1}]/(4*n), Sum[If[OddQ[n/GCD[j, n]], 2^(m*GCD[j, n]/2) + 2^((m+2)*GCD[j, n]/2) - 2^(m*GCD[j, n]+1), 0], {j, 1, n-1}]/(8n)]; %t A222187 b2[m_, n_] := b2a[m, n] + b2b[m, n] + b2c[m, n]; %t A222187 b3[m_, n_] := b2[n, m]; b4oo[m_, n_] := 2^((m*n - 3)/2); %t A222187 b4eo[m_, n_] := 3*2^(m*n/2 - 3); b4ee[m_, n_] := 7*2^(m*n/2 - 4); %t A222187 a[m_, n_] := Module[{b}, If[OddQ[m], If[OddQ[n], b = b4oo[m, n], b = b4eo[m, n]], If[OddQ[n], b = b4eo[m, n], b = b4ee[m, n]]]; b += b1[m, n] + b2[m, n] + b3[m, n]; Return[b]]; %t A222187 a[m_] := a[m, 2]; %t A222187 Array[a, 27] (* _Jean-François Alcover_, Sep 23 2018, after _Michel Marcus_ in A222188 *) %Y A222187 A column of A222188. %K A222187 nonn %O A222187 1,1 %A A222187 _N. J. A. Sloane_, Feb 11 2013 %E A222187 More terms from _Michel Marcus_, Feb 17 2013