This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222264 #11 Feb 22 2013 00:14:48 %S A222264 1,2,3,4,8,10,14,15,16,32,44,64,110,128,135,136,152,182,184,190,248, %T A222264 256,315,512,585,752,819,884,1012,1024,1155,1365,1485,1550,1892,2048, %U A222264 2144,2272,2295,2528,4064,4096,4455,6490,7030,8192,8384,8648,9009,9405,9945 %N A222264 Numbers n such that 2n/sigma(n) - 1 = 1/x for some integer x. %C A222264 If the number x is a prime which does not divide n, then n*x is a perfect number. This happens (so far) only when x = 2n-1 = 2^p-1 is a Mersenne prime (cf. A000043). But if x does not divide n, as, e.g., for (n,x)=(10,9), then n*x is a so-called freestyle perfect number, cf. A058007: Namely it "would be perfect if x is assumed to be prime", which means that sigma(n*x) is replaced by sigma(n)*(x+1) in the relation 2P=sigma(P) characterizing perfect numbers P, listed in A000396. %C A222264 See also the (more interesting) subsequence of odd terms, A222263. %H A222264 Donovan Johnson, <a href="/A222264/b222264.txt">Table of n, a(n) for n = 1..1000</a> %e A222264 8 is in the sequence because 2 * 8/sigma(8) - 1 = 16/15 - 1 = 1/15. %e A222264 9 is not in the sequence because 2 * 9/sigma(9) - 1 = 5/13. %e A222264 10 is in the sequence because 2 * 10/sigma(10) - 1 = 20/18 - 1 = 1/9. %t A222264 Select[Range[10^5], IntegerQ[2#/DivisorSigma[1, #] - 1] &] (* _Alonso del Arte_, Feb 20 2013 *) %o A222264 (PARI) for(n=1,9e9, numerator(2*n/sigma(n)-1)==1 & print1(n",")) %K A222264 nonn %O A222264 1,2 %A A222264 _M. F. Hasler_, Feb 20 2013