A222267 The number of distinct lines defined by an n X n X n grid of points.
28, 253, 1492, 5485, 17092, 41905, 95140, 191773, 364420, 638785, 1085500, 1745389, 2743084, 4136257, 6101740, 8747821, 12377764, 17066737, 23287564, 31174813, 41276548, 53767873, 69544324, 88722973, 112450132, 140859361, 175324636
Offset: 2
Examples
Each of the 28 pairs of points on a 2 X 2 X 2 grid of points defines a distinct line, so a(2) = 28. Of the 351 pairs of points on a 3 X 3 X 3 grid, there are only 253 distinct lines, so a(3) = 253.
Links
- Clive Tooth, Table of n, a(n) for n = 2..200 (using a method of Haukkanen & Merikoski) [Terms 2 through 70 were computed by Jon E. Schoenfield]
- P. Haukkanen, J. K. Merikoski, Some formulas for numbers of line segments and lines in a rectangular grid, arXiv:1108.1041 [math.CO], 2011.
- Clive Tooth, A C# class declaration
Programs
-
Mathematica
mq[{x1_, y1_}, {x2_, y2_}] := If[x1 == x2, {x1}, {y2 - y1, x2*y1 - x1*y2}/(x2 - x1)]; two[n_] := Block[{p = Tuples[Range@n, 2]}, Length@Union@Flatten[Table[mq[p[[i]], p[[j]]], {i, 2, n^2}, {j, i - 1}], 1]]; coef[a_, b_] := Block[{d = b - a}, If[d[[1]] == 0, {0}, d *= Sign@d[[1]]/GCD @@ d; {a - d*a[[1]]/d[[1]], d}]]; a[n_] := Block[{p = Tuples[Range@n, 3]}, n*two[n] - 1 + Length@Union@ Flatten[Table[coef[p[[i]], p[[j]]], {i, 2, n^3}, {j, i - 1}], 1]]; Table[v = a[n]; Print@v; v, {n, 2, 12}] (* Giovanni Resta, Feb 14 2013 *)
Extensions
a(6)-a(12) from Giovanni Resta, Feb 14 2013
a(13)-a(28) from Jon E. Schoenfield, Sep 16 2013
Comments