This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222310 #28 Dec 07 2016 23:33:50 %S A222310 1,2,2,3,6,3,6,2,12,4,5,30,15,20,5,15,3,10,6,30,6,105,7,21,210,35,42, %T A222310 7,70,6,42,2,420,12,56,8,1,70,105,10,5,84,63,72,9,5,5,14,30,3,15,1260, %U A222310 20,90,10,33,165,33,462,385,1155,77,1980,99,110,11,55,15,11,3,154,10,462,6,330,30,132,12,65,143,2145,195,65,10010,1001,78 %N A222310 Array read by antidiagonals: first row is 1, 2, 3, 4, ...; for subsequent rows, write i*j/gcd(i,j)^2 under ...i.j... in previous row. %H A222310 Ivan Neretin, <a href="/A222310/b222310.txt">Table of n, a(n) for n = 1..8001</a> %H A222310 Cristian Cobeli, Mihai Prunescu, Alexandru Zaharescu, <a href="http://arxiv.org/abs/1511.04315">A growth model based on the arithmetic Z-game</a>, arXiv:1511.04315 [math.NT], 2015. %H A222310 C. Cobeli and A. Zaharescu, <a href="http://rms.unibuc.ro/bulletin/pdf/56-1/PromenadePascalPart1.pdf">Promenade around Pascal Triangle-Number Motives</a>, Bull. Math. Soc. Sci. Math. Roumanie, Tome 56(104) No. 1, 2013, 73-98. %e A222310 Array begins: %e A222310 1...2...3.....4......5......6.....7.....8.....9.....10 %e A222310 ..2...6....12....20.....30....42.....56...72.....90 %e A222310 ....3...2....15......6.....35....12....63....20 %e A222310 ......6....30....10....210...420.....84..1260 %e A222310 ........5.....3.....21......2.....5....15 %e A222310 ...........15.....7.....42....10......3 %e A222310 .............105.....6.....105...30 %e A222310 ........ %p A222310 # To get first M rows of the array (s0 is A222311): %p A222310 g:=(i,j)->i*j/gcd(i,j)^2; %p A222310 M:=50; %p A222310 s0:=[1]: %p A222310 s1:=[seq(n,n=1..M)]: %p A222310 for i1 from 1 to M-1 do %p A222310 lprint(s1); %p A222310 s2:=[seq(g(s1[i],s1[i+1]),i=1..nops(s1)-1)]; %p A222310 s0:=[op(s0),s2[1]]; %p A222310 s1:=[seq(s2[i],i=1..nops(s2))]; %p A222310 od: %p A222310 # To produce A222310 (i.e., to read the array by antidiagonals): %p A222310 g:=(i,j)->i*j/gcd(i,j)^2; %p A222310 M:=15; %p A222310 b1:=Array(1..M); %p A222310 s0:=[1]: %p A222310 s1:=[seq(n,n=1..M)]: %p A222310 b1[1]:=s1; %p A222310 for i1 from 1 to M-1 do %p A222310 #lprint(s1); %p A222310 s2:=[seq(g(s1[i],s1[i+1]),i=1..nops(s1)-1)]; %p A222310 b1[i1+1]:=s2; %p A222310 s0:=[op(s0),s2[1]]; %p A222310 s1:=[seq(s2[i],i=1..nops(s2))]; %p A222310 od: %p A222310 #[seq(s0[i],i=1..nops(s0))]; (that gives A222311) %p A222310 lis:=[]: %p A222310 for i from 1 to M do for j from 1 to i do %p A222310 lis:=[op(lis),b1[i-j+1][j]]; %p A222310 od: od: %p A222310 [seq(lis[k],k=1..nops(lis))]; %t A222310 a = r = {1}; Do[a = Join[a, Reverse[r = FoldList[#1*#2/GCD[#1, #2]^2 &, n, r]]], {n, 2, 13}]; a (* _Ivan Neretin_, May 14 2015 *) %Y A222310 Cf. A036262. Leading diagonal is A222311 (cf. A222313). %Y A222310 Similar array with primes in the starting row is A255483. %K A222310 nonn,tabl %O A222310 1,2 %A A222310 _N. J. A. Sloane_, Feb 16 2013