cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222362 Decimal expansion of the ratio of the area of the latus rectum segment of any equilateral hyperbola to the square of its semi-axis: sqrt(2) - log(1 + sqrt(2)).

This page as a plain text file.
%I A222362 #80 Feb 16 2025 08:33:19
%S A222362 5,3,2,8,3,9,9,7,5,3,5,3,5,5,2,0,2,3,5,6,9,0,7,9,3,9,9,2,2,9,9,0,5,7,
%T A222362 6,9,5,4,1,5,1,1,5,4,7,1,1,5,3,1,2,6,6,2,4,2,3,3,8,4,1,2,9,3,3,7,3,5,
%U A222362 5,2,9,4,2,4,0,0,8,0,9,5,1,0,1,6,6,8,0,6,4,2,4,1,7,3,8,5,5,2,9,8,7,8,2,7,4,0,3,0,0,3
%N A222362 Decimal expansion of the ratio of the area of the latus rectum segment of any equilateral hyperbola to the square of its semi-axis: sqrt(2) - log(1 + sqrt(2)).
%C A222362 Just as circles are ellipses whose semi-axes are equal (and are called the radius of the circle), equilateral (or rectangular) hyperbolas are hyperbolas whose semi-axes are equal.
%C A222362 Just as the ratio of the area of a circle to the square of its radius is always Pi, the ratio of the area of the latus rectum segment of any equilateral hyperbola to the square of its semi-axis is the universal equilateral hyperbolic constant sqrt(2) - log(1 + sqrt(2)).
%C A222362 Note the remarkable similarity to sqrt(2) + log(1 + sqrt(2)), the universal parabolic constant A103710, which is a ratio of arc lengths rather than of areas.  Lockhart (2012) says "the arc length integral for the parabola ... is intimately connected to the hyperbolic area integral ... I think it is surprising and wonderful that the length of one conic section is related to the area of another".
%C A222362 This constant is also the abscissa of the vertical asymptote of the involute of the logarithmic curve (starting point (1,0)). - _Jean-François Alcover_, Nov 25 2016
%D A222362 H. Dörrie, 100 Great Problems of Elementary Mathematics, Dover, 1965, Problems 57 and 58.
%D A222362 P. Lockhart, Measurement, Harvard University Press, 2012, p. 369.
%H A222362 G. C. Greubel, <a href="/A222362/b222362.txt">Table of n, a(n) for n = 0..10000</a>
%H A222362 J.-F. Alcover, <a href="/A222362/a222362.pdf">Asymptote</a> of the logarithmic curve involute.
%H A222362 I.N. Bronshtein, <a href="http://books.google.com/books?id=gCgOoMpluh8C&amp;lpg=PA202&amp;vq=%22areas%20in%20the%20hyperbola%22&amp;pg=PA202#v=onepage&amp;q&amp;f=false">Handbook of Mathematics</a>, 5th ed., Springer, 2007, p. 202, eq. (3.338a).
%H A222362 Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Mathematical Constants, Errata and Addenda</a>, 2012, section 8.1.
%H A222362 J. Pahikkala, <a href="http://planetmath.org/arclengthofparabola">Arc Length Of Parabola</a>, PlanetMath.
%H A222362 Sylvester Reese and Jonathan Sondow, <a href="https://mathworld.wolfram.com/UniversalParabolicConstant.html">Universal Parabolic Constant</a>, MathWorld.
%H A222362 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/RectangularHyperbola.html">Rectangular hyperbola</a>.
%H A222362 Wikipedia, <a href="http://en.wikipedia.org/wiki/Hyperbola#Rectangular_hyperbola_with_horizontal.2Fvertical_asymptotes_.28Cartesian_coordinates.29">Equilateral hyperbola</a>.
%H A222362 Wikipedia, <a href="http://en.wikipedia.org/wiki/Universal_parabolic_constant">Universal parabolic constant</a>.
%H A222362 <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.
%F A222362 Sqrt(2) - arcsinh(1), also equals Integral_{1..oo} 1/(x^2*(1+x)^(1/2)) dx. - _Jean-François Alcover_, Apr 16 2015
%F A222362 Equals Integral_{x = 0..1} x^2/sqrt(1 + x^2) dx. - _Peter Bala_, Feb 28 2019
%e A222362 0.532839975353552023569079399229905769541511547115312662423384129337355...
%p A222362 Digits:=100: evalf(sqrt(2)-arcsinh(1)); # _Wesley Ivan Hurt_, Nov 27 2016
%t A222362 RealDigits[Sqrt[2] - Log[1 + Sqrt[2]], 10, 111][[1]]
%o A222362 (PARI) sqrt(2)-log(sqrt(2)+1) \\ _Charles R Greathouse IV_, Apr 18 2013
%o A222362 (PARI) sqrt(2)-asinh(1) \\ _Charles R Greathouse IV_, Dec 04 2020
%o A222362 (Magma) Sqrt(2) - Log(Sqrt(2)+1); // _G. C. Greubel_, Feb 02 2018
%Y A222362 Cf. A002193, A091648, A103710, A103711, A180434, A278386.
%K A222362 cons,easy,nonn
%O A222362 0,1
%A A222362 Sylvester Reese and _Jonathan Sondow_, Mar 01 2013