cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A222381 Sum of neighbor maps: number of n X 2 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal and antidiagonal neighbors in a random 0..2 n X 2 array.

Original entry on oeis.org

2, 16, 64, 232, 1024, 4096, 16224, 65536, 262144, 1047680, 4194304, 16777216, 67104256, 268435456, 1073741824, 4294944768, 17179869184, 68719476736, 274877800448, 1099511627776, 4398046511104, 17592185552896, 70368744177664
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2013

Keywords

Comments

Column 2 of A222386.

Examples

			Some solutions for n=3:
..1..0....1..1....1..0....0..1....0..1....0..0....0..0....0..1....1..0....0..1
..0..0....0..0....1..1....0..1....0..1....0..1....0..0....1..0....0..0....0..0
..1..0....1..1....1..1....1..1....1..0....1..0....0..1....0..0....0..1....0..1
		

Crossrefs

Cf. A222386.

Formula

Empirical: a(n) = 4*a(n-1) + 8*a(n-3) - 32*a(n-4) - 16*a(n-6) + 64*a(n-7).
Empirical g.f.: 2*x*(1 + 4*x - 20*x^3 + 16*x^4 + 32*x^6) / ((1 - 4*x)*(1 - 4*x^3)^2). - Colin Barker, Mar 15 2018

A222382 Sum of neighbor maps: number of n X 3 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal and antidiagonal neighbors in a random 0..2 n X 3 array.

Original entry on oeis.org

8, 48, 512, 3968, 32768, 261376, 2097152, 16773120, 134217728, 1073721344, 8589934592, 68719378432, 549755813888, 4398046052352, 35184372088832, 281474974613504, 2251799813685248, 18014398500044800, 144115188075855872
Offset: 1

Views

Author

R. H. Hardin, Feb 18 2013

Keywords

Comments

Column 3 of A222386.

Examples

			Some solutions for n=3:
..1..1..1....1..1..1....0..1..0....1..1..1....0..0..1....0..1..1....0..1..1
..1..1..1....1..1..0....0..1..0....1..0..0....0..1..0....1..0..0....1..0..0
..1..1..0....0..1..1....1..0..0....0..1..1....1..1..1....1..0..1....1..0..0
		

Crossrefs

Cf. A222386.

Formula

Empirical: a(n) = 8*a(n-1) + 8*a(n-2) - 64*a(n-3) - 16*a(n-4) + 128*a(n-5).
Empirical g.f.: 8*x*(1 - 2*x + 8*x^2 + 16*x^4) / ((1 - 2*x)^2*(1 + 2*x)^2*(1 - 8*x)). - Colin Barker, Aug 16 2018

A222383 Sum of neighbor maps: number of nX4 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal and antidiagonal neighbors in a random 0..2 nX4 array.

Original entry on oeis.org

16, 248, 3968, 63488, 1048320, 16777216, 268435072, 4294961152, 68702699520, 1099511597056, 17592186044416, 281474976700416, 4503599627206656, 72057490958712832, 1152921504603963392, 18446744073709551616
Offset: 1

Views

Author

R. H. Hardin Feb 18 2013

Keywords

Comments

Column 4 of A222386

Examples

			Some solutions for n=3
..0..1..1..1....0..1..1..0....1..1..0..1....0..0..1..1....0..1..0..0
..1..0..0..0....0..0..0..0....1..1..1..0....1..0..0..0....1..0..1..1
..1..1..1..0....0..0..1..0....0..0..1..0....0..1..0..1....1..0..0..1
		

Formula

Empirical: a(n) = 16*a(n-1) +8352*a(n-5) -133632*a(n-6) -18096384*a(n-10) +289542144*a(n-11) +2753724416*a(n-15) -44059590656*a(n-16) -143077146624*a(n-20) +2289234345984*a(n-21) +2757369004032*a(n-25) -44117904064512*a(n-26) -17592186044416*a(n-30) +281474976710656*a(n-31)

A222384 Sum of neighbor maps: number of nX5 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal and antidiagonal neighbors in a random 0..2 nX5 array.

Original entry on oeis.org

24, 1024, 32768, 1048576, 33546240, 1073741824, 34359738368, 1099510054912, 35184372088832, 1125899906842624, 36028796750528512, 1152921504606846976, 36893488147419103232, 1180591620674461630464, 37778931862957161709568
Offset: 1

Views

Author

R. H. Hardin Feb 18 2013

Keywords

Comments

Column 5 of A222386

Examples

			Some solutions for n=3
..0..1..1..0..0....1..0..1..0..0....0..0..0..1..1....0..1..0..0..1
..0..0..0..0..0....0..1..1..1..1....1..0..1..0..0....0..0..1..0..0
..0..0..1..1..0....1..0..0..0..1....0..0..1..1..0....1..1..0..0..0
		

Formula

Empirical: a(n) = 32*a(n-1) +256*a(n-3) -8192*a(n-4) -16384*a(n-6) +524288*a(n-7) for n>9

A222385 Sum of neighbor maps: number of nX6 binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal and antidiagonal neighbors in a random 0..2 nX6 array.

Original entry on oeis.org

64, 3968, 262144, 16776896, 1073741712, 68719469568, 4398044807168, 281474968175508, 18014398509481984, 1152921504606846976, 73786976290732196864, 4722366482869645213696, 302231454903657058795520
Offset: 1

Views

Author

R. H. Hardin Feb 18 2013

Keywords

Comments

Column 6 of A222386

Examples

			Some solutions for n=3
..0..0..0..1..0..1....0..0..0..1..1..1....0..0..0..1..0..1....0..0..0..1..1..1
..0..1..1..1..1..0....0..0..1..0..0..1....0..0..0..0..0..0....0..0..1..0..0..1
..1..1..0..0..0..0....0..0..0..0..0..0....1..0..0..0..0..1....0..0..0..0..1..0
		

A222387 Sum of neighbor maps: number of 2Xn binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal and antidiagonal neighbors in a random 0..2 2Xn array.

Original entry on oeis.org

4, 16, 48, 248, 1024, 3968, 15872, 65536, 262144, 1048576, 4177632, 16777216, 67108864, 268435456, 1073479680, 4294961152, 17179869184, 68719378432, 274872664064, 1099511627776, 4398046511104, 17592186044416, 70368641459200
Offset: 1

Views

Author

R. H. Hardin Feb 18 2013

Keywords

Comments

Row 2 of A222386

Examples

			Some solutions for n=3
..1..1..0....0..0..1....1..1..0....0..1..1....1..1..1....0..0..1....0..0..0
..1..0..0....1..1..0....1..1..1....0..1..0....0..0..0....0..0..0....1..0..0
		

Formula

Empirical: a(n) = 4*a(n-1) +32*a(n-4) -128*a(n-5) -256*a(n-8) +1024*a(n-9) +592*a(n-12) -2368*a(n-13) -18944*a(n-16) +75776*a(n-17) +151552*a(n-20) -606208*a(n-21) -109056*a(n-24) +436224*a(n-25) +3489792*a(n-28) -13959168*a(n-29) -27918336*a(n-32) +111673344*a(n-33) +6594560*a(n-36) -26378240*a(n-37) -211025920*a(n-40) +844103680*a(n-41) +1688207360*a(n-44) -6752829440*a(n-45) -189071360*a(n-48) +756285440*a(n-49) +6050283520*a(n-52) -24201134080*a(n-53) -48402268160*a(n-56) +193609072640*a(n-57) +2853175296*a(n-60) -11412701184*a(n-61) -91301609472*a(n-64) +365206437888*a(n-65) +730412875776*a(n-68) -2921651503104*a(n-69) -22011707392*a(n-72) +88046829568*a(n-73) +704374636544*a(n-76) -2817498546176*a(n-77) -5634997092352*a(n-80) +22539988369408*a(n-81) +68719476736*a(n-84) -274877906944*a(n-85) -2199023255552*a(n-88) +8796093022208*a(n-89) +17592186044416*a(n-92) -70368744177664*a(n-93)

A222388 Sum of neighbor maps: number of 3Xn binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal and antidiagonal neighbors in a random 0..2 3Xn array.

Original entry on oeis.org

8, 64, 512, 3968, 32768, 262144, 2093824, 16776064, 134121152, 1073741824, 8589934592, 68719450112, 549755703296, 4398040219648, 35184371580928, 281474867658752, 2251799813685248, 18014398509481984, 144115184855048192
Offset: 1

Views

Author

R. H. Hardin Feb 18 2013

Keywords

Comments

Row 3 of A222386

Examples

			Some solutions for n=3
..0..0..1....0..0..0....1..0..0....1..1..1....0..0..0....1..0..1....1..0..0
..1..1..0....1..1..1....1..1..1....0..0..0....1..0..0....0..1..0....1..1..1
..1..1..1....1..0..1....1..1..0....0..1..0....1..0..0....1..0..0....0..1..1
		

A222389 Sum of neighbor maps: number of 4Xn binary arrays indicating the locations of corresponding elements equal to the sum mod 3 of their horizontal and antidiagonal neighbors in a random 0..2 4Xn array.

Original entry on oeis.org

16, 232, 3968, 63488, 1048576, 16776896, 268369920, 4294961152, 68702608704, 1099511627776, 17592160878592, 281474976700416, 4503599627370496
Offset: 1

Views

Author

R. H. Hardin Feb 18 2013

Keywords

Comments

Row 4 of A222386

Examples

			Some solutions for n=3
..0..1..0....1..0..1....1..1..1....1..1..0....1..0..1....1..0..0....0..1..0
..0..1..0....0..0..0....1..0..1....1..0..1....1..0..0....0..1..1....0..0..1
..0..0..0....1..1..0....0..1..0....1..0..1....0..0..1....0..1..0....1..1..0
..0..0..0....0..1..1....1..0..1....1..1..1....1..1..0....1..0..1....1..1..1
		
Showing 1-8 of 8 results.