This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222403 #19 Apr 04 2018 15:44:27 %S A222403 0,1,1,3,2,3,6,5,5,6,10,11,10,11,10,15,21,21,21,21,15,21,36,42,42,42, %T A222403 36,21,28,57,78,84,84,78,57,28,36,85,135,162,168,162,135,85,36,45,121, %U A222403 220,297,330,330,297,220,121,45,55,166,341,517,627,660,627,517,341,166,55 %N A222403 Triangle read by rows: left and right edges are A000217, interior entries are filled in using the Pascal triangle rule. %C A222403 In general, if the sequence defining the left and right edges is [a_0, a_1, ...], the row sums [s_0, s_1, ...] are given by s_0=a_0 and, for n>0, %C A222403 s_n = 2a_n + Sum_{i=1..n-1} 2^(n-i) a_i. %C A222403 Conversely, given the rows sums [s_0, s_1, ...], the edge sequence is [a_0, a_1, ...] where a_0=s_0 and, for n>0, a_n = (s_n - Sum_{i=1..n-1} s_i)/2. %H A222403 Robert Israel, <a href="/A222403/b222403.txt">Table of n, a(n) for n = 0..10010</a> %F A222403 G.f. as triangle: (1+x-4*x*y+x*y^2+x^2*y^2)*y/((1-y)^2*(-x*y+1)^2*(-x*y-y+1)). - _Robert Israel_, Apr 04 2018 %e A222403 Triangle begins: %e A222403 0 %e A222403 1, 1 %e A222403 3, 2, 3 %e A222403 6, 5, 5, 6 %e A222403 10, 11, 10, 11, 10 %e A222403 15, 21, 21, 21, 21, 15 %e A222403 21, 36, 42, 42, 42, 36, 21 %e A222403 28, 57, 78, 84, 84, 78, 57, 28 %e A222403 ... %p A222403 d:=[seq(n*(n+1)/2,n=0..14)]; %p A222403 f:=proc(d) local T,M,n,i; %p A222403 M:=nops(d); %p A222403 T:=Array(0..M-1,0..M-1); %p A222403 for n from 0 to M-1 do T[n,0]:=d[n+1]; T[n,n]:=d[n+1]; od: %p A222403 for n from 2 to M-1 do %p A222403 for i from 1 to n-1 do T[n,i]:=T[n-1,i-1]+T[n-1,i]; od: od: %p A222403 lprint("triangle:"); %p A222403 for n from 0 to M-1 do lprint(seq(T[n,i],i=0..n)); od: %p A222403 lprint("row sums:"); %p A222403 lprint([seq( add(T[i,j],j=0..i), i=0..M-1)]); %p A222403 end; %p A222403 f(d); %t A222403 t[n_, n_] := n*(n+1)/2; t[n_, 0] := n*(n+1)/2; t[n_, k_] := t[n, k] = t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jan 20 2014 *) %Y A222403 Other triangles of this type: A007318, A051666, A134634, A222404, A222405. %Y A222403 Cf. A000217. %Y A222403 Row sums are A005803. %K A222403 nonn,tabl %O A222403 0,4 %A A222403 _N. J. A. Sloane_, Feb 18 2013