A222404 Triangle read by rows: left and right edges are A002378, interior entries are filled in using the Pascal triangle rule.
0, 2, 2, 6, 4, 6, 12, 10, 10, 12, 20, 22, 20, 22, 20, 30, 42, 42, 42, 42, 30, 42, 72, 84, 84, 84, 72, 42, 56, 114, 156, 168, 168, 156, 114, 56, 72, 170, 270, 324, 336, 324, 270, 170, 72, 90, 242, 440, 594, 660, 660, 594, 440, 242, 90, 110, 332, 682, 1034, 1254, 1320, 1254, 1034, 682, 332, 110
Offset: 0
Examples
Triangle begins: 0 2, 2 6, 4, 6 12, 10, 10, 12 20, 22, 20, 22, 20 30, 42, 42, 42, 42, 30 42, 72, 84, 84, 84, 72, 42 56, 114, 156, 168, 168, 156, 114, 56 ...
Programs
-
Maple
d:=[seq(n*(n+1),n=0..14)]; f:=proc(d) local T,M,n,i; M:=nops(d); T:=Array(0..M-1,0..M-1); for n from 0 to M-1 do T[n,0]:=d[n+1]; T[n,n]:=d[n+1]; od: for n from 2 to M-1 do for i from 1 to n-1 do T[n,i]:=T[n-1,i-1]+T[n-1,i]; od: od: lprint("triangle:"); for n from 0 to M-1 do lprint(seq(T[n,i],i=0..n)); od: lprint("row sums:"); lprint([seq( add(T[i,j],j=0..i), i=0..M-1)]); end; f(d);
-
Mathematica
t[n_, n_] := n*(n+1); t[n_, 0] := n*(n+1); t[n_, k_] := t[n, k] = t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 20 2014 *)