A222413 All primes p > 5 such that A001175(p) is smaller than the maximal value permitted by Wall's Theorems 6 and 7.
29, 47, 89, 101, 107, 113, 139, 151, 181, 199, 211, 229, 233, 263, 281, 307, 331, 347, 349, 353, 401, 421, 461, 509, 521, 541, 557, 563, 619, 661, 677, 691, 709, 743, 761, 769, 797, 809, 811, 829, 859, 881, 911, 919, 941, 953, 967, 977, 991, 1009, 1021, 1031, 1049, 1061, 1069, 1087, 1097, 1103, 1109, 1151, 1217, 1223, 1229, 1231, 1249, 1277
Offset: 1
Keywords
Examples
From _Wolfdieter Lang_, Jan 16 2015: (Start) a(1) = 29 because A001175(29) = 14 but the maximal value is 29 - 1 = 28. a(2) = 47 because A001175(47) = 32 but the maximal value is 2*(47 + 1) = 96. All other primes p > 5 have A001175(p) = maximal value for p. E.g., p = 11 has A001175(11) = 11-1 = 10 and p = 7 has A001175(7) = 2*(7 + 1) = 16. (End)
Links
- D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
Crossrefs
Extensions
Name corrected by Wolfdieter Lang, Jan 16 2015
Comments