A222445
Sum of neighbor maps: number of nX2 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their horizontal, vertical and antidiagonal neighbors in a random 0..3 nX2 array.
Original entry on oeis.org
2, 14, 64, 210, 1024, 4000, 16288, 65536, 260080, 1048576, 4191744, 16774656, 67108864, 268379104, 1073741824, 4294909952, 17179811840, 68719476736, 274876642816, 1099511627776, 4398045331456, 17592184864768, 70368744177664
Offset: 1
Some solutions for n=3
..1..1....1..1....0..0....0..1....1..0....1..0....1..0....1..0....0..0....1..1
..1..1....1..1....0..0....0..1....0..0....0..1....1..1....1..1....0..0....0..0
..0..0....1..0....0..1....0..0....1..1....0..1....0..0....0..1....1..1....1..0
A222446
Sum of neighbor maps: number of nX3 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their horizontal, vertical and antidiagonal neighbors in a random 0..3 nX3 array.
Original entry on oeis.org
8, 64, 420, 4056, 32720, 262104, 2082688, 16777216, 134217728, 1073741824, 8588539008, 68719476736, 549755813888, 4398046511104, 35184256942080, 281474976587776, 2251799813537792, 18014398509359104, 144115179143299072
Offset: 1
Some solutions for n=3
..1..0..1....1..0..0....0..1..0....0..0..0....1..0..0....1..1..0....0..1..0
..1..1..1....1..0..0....0..0..1....1..1..1....1..1..0....0..0..0....0..0..1
..1..0..0....0..0..1....0..0..0....1..0..1....0..1..0....0..0..1....1..0..1
A222447
Sum of neighbor maps: number of nX4 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their horizontal, vertical and antidiagonal neighbors in a random 0..3 nX4 array.
Original entry on oeis.org
16, 210, 4056, 65536, 1048576, 16750154, 268430848, 4294967008, 68716055088, 1099511627776, 17592186044416, 281474975268864, 4503599621232000, 72057594037927936, 1152921504606846976, 18446744065442448416
Offset: 1
Some solutions for n=3
..1..1..0..0....1..1..1..0....0..0..1..0....1..0..1..1....0..0..1..1
..1..0..0..0....0..1..1..1....1..1..1..1....1..0..1..1....1..0..1..0
..0..1..1..1....1..0..0..1....0..0..1..1....1..0..1..1....1..1..1..1
Showing 1-3 of 3 results.
Comments