This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222469 #33 Feb 22 2025 08:58:36 %S A222469 1,1,0,-2,-8,-36,-200,-1328,-10224,-89360,-873152,-9425952,-111365120, %T A222469 -1428894656,-19781794944,-293869134848,-4662342567680, %U A222469 -78672085380864,-1406772851720192,-26571340011921920,-528613254534998016 %N A222469 Denominator sequence of the n-th convergent of the continued fraction 1/(1 - 2/(2 - 2/(3 - 2/(4 - ...)))). %C A222469 The corresponding numerator sequence is A222470(n). %C A222469 a(n) = Q(n,-2) with the denominator polynomials Q of A084950. All the given formulas follow from there. The limit of the continued fraction (-1/2)*(0 + K_{k=1..oo} (-2/k)) = 1/(1 - 2/(2 - 2/(3 - 2/(4 - ...)))) is (+1/2)*sqrt(2)*BesselJ(1,2*sqrt(2))/BesselJ(0,2*sqrt(2)) = -1.43974932187... For more decimals see A222471. %C A222469 For a combinatorial interpretation in terms of labeled Morse codes see a comment on A084950. Here each dash has label x = -2, and the dots have label j if they are at position j. Labels are multiplied and for a(n) all labeled codes on [1,2,...,n] have to be summed. %H A222469 G. C. Greubel, <a href="/A222469/b222469.txt">Table of n, a(n) for n = 0..445</a> %F A222469 a(n) = n*a(n-1) - 2*a(n-2), a(-1) = 0, a(0) = 1, n >= 1. %F A222469 a(n) = Sum_{m=0..floor(n/2)} a(n-m, m)*(-2)^m, n >= 0, with a(n,m) = (n!/m!)*binomial(n,m) = |A021009(n,m)| (Laguerre). %F A222469 a(n) = Pi*(z/2)^(n+1)*(BesselY(0,z)*BesselJ(n+1,z) - BesselJ(0,z)*BesselY(n+1,z)) with z := 2*sqrt(2). %F A222469 E.g.f.: Pi*c/(2*sqrt(1-z))*(BesselJ(1, c*sqrt(1-z))*BesselY(0, c) - BesselY(1, c*sqrt(1-z))*BesselJ(0, c)), with c = 2*sqrt(2). %F A222469 Asymptotics: lim_{n->oo} a(n)/n! = BesselJ(0, 2*sqrt(2)) = -0.1965480950... %e A222469 a(4) = 4*a(3) - 2*a(2) = 4*(-2) + 2*0 = -8. %e A222469 Continued fraction convergent: 1/(1 - 2/(2 - 2/(3 - 2/4))) = -3/2 = -12/8 = A222470(4)/a(4). %e A222469 Morse code: a(4) = -8 from the sum of all 5 labeled codes on [1,2,3,4], one with no dash, three with one dash and one with two dashes: 4! + (3*4 + 1*4 + 1*2)*(-2) + (-2)^2 = -8. %t A222469 RecurrenceTable[{a[0] == 1, a[1] == 1, a[n] == n*a[n - 1] - 2 a[n - 2]}, a[n], {n, 50}] (* _G. C. Greubel_, Aug 16 2017 *) %o A222469 (PARI) m=30; v=concat([1,1], vector(m-2)); for(n=3, m, v[n]=n*v[n-1] -2*v[n-2]); v \\ _G. C. Greubel_, May 17 2018 %o A222469 (Magma) I:=[1, 1]; [n le 2 select I[n] else n*Self(n-1) - 2*Self(n-2): n in [1..30]]; // _G. C. Greubel_, May 17 2018 %Y A222469 Cf. A084950, A221913, A222470, A222471. %Y A222469 Cf. A001040(n+1) (x=1), A058797 (x=-1), A222467 (x=2). %K A222469 sign,easy,frac %O A222469 0,4 %A A222469 _Gary Detlefs_ and _Wolfdieter Lang_, Mar 23 2013