This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222470 #16 Feb 22 2025 18:11:47 %S A222470 1,2,4,12,52,288,1912,14720,128656,1257120,13571008,160337856, %T A222470 2057250112,28480825856,423097887616,6712604550144,113268081577216, %U A222470 2025400259289600,38256068763347968,761070574748380160 %N A222470 Numerator sequence of the n-th convergent of the continued fraction 1/(1-2/(2-2/(3-2/(4-... %C A222470 The corresponding denominator sequence is A222469(n). %C A222470 a(n) = Phat(n,-2) with the numerator polynomials Phat of A221913. All the given formulas follow from there and the comments given under A084950. The limit of the continued fraction (0 + K_{k=1..oo} (-2/k))/(-2) = 1/(1-2/(2-2/(3-2/(4-... is (1/2)*sqrt(2)*BesselJ(1,2*sqrt(2))/BesselJ(0,2*sqrt(2)) = -1.43974932187023280... (see A222471). %C A222470 For a combinatorial interpretation in terms of labeled Morse codes see a comment on A221913. Here each dash has label x=-2, and the dots have label j if they are at position j. Labels are multiplied and all codes on [2,...,n+1] are summed. %F A222470 Recurrence: a(n) = n*a(n-1) - 2*a(n-2), a(-1) = -1/2, a(0) = 0, n >= 1. %F A222470 As a sum: a(n) = Sum_{m=0..floor(n/2)} a(n-m,m)*(-2)^m, n >= 1, with a(n,m) = binomial(n,m)*(n+1)!/(m+1)! = |A066667(n,m)| (Laguerre coefficients, parameter alpha = 1). %F A222470 Explicit form: a(n) = Pi*(z/2)^n*(BesselY(1,z)*BesselJ(n+1,z) - BesselJ(1,z)*BesselY(n+1,z)) with z = 2*sqrt(2). %F A222470 E.g.f.: Pi*(BesselJ(1, -x*sqrt(1-z))*BesselY(1, -x) - BesselY(1, -x*sqrt(1-z))*BesselJ(1, -x))/sqrt(1-z) with x = 2*sqrt(x). Here Phat(0,x) = 0. %F A222470 Asymptotics: lim_{n->oo} a(n)/n! = BesselJ(1,2*sqrt(2))/(sqrt(2)) = 0.2829799868805... %e A222470 a(4) = 4*a(3) - 2*a(2) = 4*4 - 2*2 = 12. %e A222470 Continued fraction convergent: 1/(1-2/(2-2/(3-2/4))) = -3/2 = 12/(-8) = a(4)/A222469(4). %e A222470 Morse code a(5) = 52 from the sum of all 5 labeled codes on [2,3,4,5], one with no dash, three with one dash and one with two dashes: 5!/1 + (4*5 + 2*5 + 2*3)*(-2) +(-2)^2 = 52. %t A222470 Rest[RecurrenceTable[{a[-1]==-(1/2),a[0]==0,a[n]==n*a[n-1]-2a[n-2]},a,{n,20}]] (* _Harvey P. Dale_, Oct 24 2015 *) %Y A222470 Cf. A084950, A221913, A222467, A001040(n+1) (x=1), A058798 (x=-1), A222468 (x=2). %K A222470 nonn,easy,frac %O A222470 1,2 %A A222470 _Gary Detlefs_ and _Wolfdieter Lang_, Mar 23 2013