A222473
Number of nX2 0..3 arrays with no more than floor(nX2/2) elements unequal to at least one king-move neighbor, with new values introduced in row major 0..3 order.
Original entry on oeis.org
1, 1, 1, 10, 11, 126, 139, 2033, 2229, 36255, 39685, 667198, 729937, 12434879, 13604769, 233248961, 255262081, 4393917596, 4810289617, 83052210509, 90956522613, 1574365187384, 1724848374973, 29920297244921, 32792034611531
Offset: 1
All solutions for n=4
..0..0....0..0....0..0....0..1....0..1....0..0....0..1....0..0....0..0....0..0
..0..0....0..0....0..0....0..0....1..1....0..0....2..2....0..0....0..0....1..1
..0..0....0..0....0..0....0..0....1..1....0..0....2..2....0..0....1..1....1..1
..0..1....0..0....1..0....0..0....1..1....1..2....2..2....1..1....1..1....1..1
A222474
Number of nX3 0..3 arrays with no more than floor(nX3/2) elements unequal to at least one king-move neighbor, with new values introduced in row major 0..3 order.
Original entry on oeis.org
1, 1, 5, 42, 45, 1582, 2953, 104833, 179105, 6910335, 12297363, 463356818, 842066129, 31086653839, 57898183793, 2088249634569, 3984107937241, 140397984424512, 274405097987979, 9447509884713957, 18914117934834161
Offset: 1
Some solutions for n=4
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..1..0....0..1..2
..2..2..2....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....2..2..2
..2..2..2....0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....2..2..2
..2..2..2....0..0..0....1..0..0....1..0..1....1..1..0....0..0..0....2..2..2
A222475
Number of nX4 0..3 arrays with no more than floor(nX4/2) elements unequal to at least one king-move neighbor, with new values introduced in row major 0..3 order.
Original entry on oeis.org
4, 10, 42, 235, 1450, 30883, 267772, 7073732, 67911068, 1835377464, 17762404598, 478005487727, 4694125854134, 124576004895424, 1240340640828968, 32486189811716076, 327738319146833494, 8473377832221877331
Offset: 1
Some solutions for n=4
..0..0..0..0....0..0..0..0....0..0..0..1....0..0..0..0....0..0..1..0
..0..0..0..0....0..0..0..0....0..0..0..2....0..0..0..0....0..0..0..1
..1..1..0..0....0..0..0..0....0..0..0..3....0..0..0..0....0..0..0..0
..1..1..0..0....0..1..2..3....0..0..0..2....1..0..1..1....0..0..0..0
A222476
Number of nX5 0..3 arrays with no more than floor(nX5/2) elements unequal to at least one king-move neighbor, with new values introduced in row major 0..3 order.
Original entry on oeis.org
5, 11, 45, 1450, 11994, 574388, 4927416, 482530769, 4741171798, 481046300094, 4838816683797, 496656128182183, 5028636489857930, 513344628076882932, 5240628607047036703, 531044284666438394253, 5465205965532788827787
Offset: 1
Some solutions for n=4
..0..0..1..1..0....0..0..1..1..1....0..1..0..2..2....0..1..2..1..1
..0..0..0..0..0....0..1..1..1..1....3..3..3..3..3....0..0..0..0..0
..0..0..0..0..0....2..1..1..1..1....3..3..3..3..3....0..0..0..0..0
..0..0..0..0..0....3..1..1..1..1....3..3..3..3..3....0..0..0..0..0
A222477
Number of nX6 0..3 arrays with no more than floor(nX6/2) elements unequal to at least one king-move neighbor, with new values introduced in row major 0..3 order.
Original entry on oeis.org
14, 126, 1582, 30883, 574388, 18213127, 544804117, 39402895960, 1636155043302, 146686792732538, 6439927626021526, 596678969573881129, 26510835071944648421, 2457864770899715233611, 109873597746835621952044
Offset: 1
Some solutions for n=4
..0..0..0..0..1..2....0..1..0..0..0..0....0..0..0..0..1..2....0..0..0..0..0..1
..0..0..0..0..0..0....1..2..0..0..0..0....0..0..0..0..2..0....0..0..0..0..2..0
..0..0..0..0..1..3....1..2..0..0..0..0....0..0..0..0..3..2....0..0..0..0..0..3
..0..0..0..0..0..1....0..0..0..0..0..0....0..0..0..0..2..2....0..0..0..0..0..3
A222478
Number of nX7 0..3 arrays with no more than floor(nX7/2) elements unequal to at least one king-move neighbor, with new values introduced in row major 0..3 order.
Original entry on oeis.org
17, 139, 2953, 267772, 4927416, 544804117, 17557049164, 3344195404943, 145842478973059, 43014763466911784, 2152016451274069352, 684473548396481784093, 34905249009694803928802
Offset: 1
Some solutions for n=4
..0..0..0..0..0..0..1....0..0..0..0..1..2..1....0..0..0..0..0..1..2
..0..0..0..0..0..0..2....0..0..0..0..0..0..0....0..0..0..0..3..1..0
..0..0..0..0..1..3..1....0..0..0..0..0..2..0....0..0..0..0..0..0..3
..0..0..0..0..2..2..3....0..0..0..0..0..3..3....0..0..0..0..0..0..2
Showing 1-6 of 6 results.
Comments