cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222526 O.g.f.: Sum_{n>=0} (n^6)^n * exp(-n^6*x) * x^n / n!.

This page as a plain text file.
%I A222526 #10 Nov 21 2017 13:53:10
%S A222526 1,1,2047,64439010,11681056634501,7713000216608565075,
%T A222526 14204422416132896951197888,61232072982330045410678351728440,
%U A222526 545827051514425992551826008968173372261,9173647538352903119028122246836507680995590680
%N A222526 O.g.f.: Sum_{n>=0} (n^6)^n * exp(-n^6*x) * x^n / n!.
%H A222526 G. C. Greubel, <a href="/A222526/b222526.txt">Table of n, a(n) for n = 0..96</a>
%F A222526 a(n) = Stirling2(6*n, n).
%F A222526 a(n) = [x^(6*n)] (6*n)! * (exp(x) - 1)^n / n!.
%F A222526 a(n) = [x^(5*n)] 1 / Product_{k=1..n} (1-k*x).
%F A222526 a(n) = 1/n! * [x^n] Sum_{k>=0} (k^6)^k*x^k / (1 + k^6*x)^(k+1).
%F A222526 a(n) ~ n^(5*n) * 6^(6*n) / (sqrt(2*Pi*(1-c)*n) * exp(5*n) * (6-c)^(5*n) * c^n), where c = -LambertW(-6*exp(-6)). - _Vaclav Kotesovec_, May 11 2014
%e A222526 O.g.f.: A(x) = 1 + x + 2047*x^2 + 64439010*x^3 + 11681056634501*x^4 +...+ Stirling2(6*n, n)*x^n +...
%e A222526 where
%e A222526 A(x) = 1 + 1^6*x*exp(-1^6*x) + 2^12*exp(-2^6*x)*x^2/2! + 3^18*exp(-3^6*x)*x^3/3! + 4^24*exp(-4^6*x)*x^4/4! + 5^30*exp(-5^6*x)*x^5/5! +...
%e A222526 is a power series in x with integer coefficients.
%t A222526 Table[StirlingS2[6*n, n],{n,0,20}] (* _Vaclav Kotesovec_, May 11 2014 *)
%o A222526 (PARI) {a(n)=polcoeff(sum(k=0, n, (k^6)^k*exp(-k^6*x +x*O(x^n))*x^k/k!), n)}
%o A222526 (PARI) {a(n)=1/n!*polcoeff(sum(k=0, n, (k^6)^k*x^k/(1+k^6*x +x*O(x^n))^(k+1)), n)}
%o A222526 (PARI) {a(n)=polcoeff(1/prod(k=1, n, 1-k*x +x*O(x^(5*n))), 5*n)}
%o A222526 (PARI) {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
%o A222526 {a(n) = Stirling2(6*n, n)}
%o A222526 for(n=0, 12, print1(a(n), ", "))
%Y A222526 Cf. A007820, A217913, A217914, A217915, A222527, A222528, A222529, A222530, A217900.
%K A222526 nonn
%O A222526 0,3
%A A222526 _Paul D. Hanna_, Feb 23 2013