cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A222549 Number of (n+2) X 1 arrays of occupancy after each element moves up to +-2 places but not 0.

Original entry on oeis.org

7, 20, 64, 208, 651, 2056, 6496, 20483, 64627, 203905, 643272, 2029453, 6402679, 20199560, 63726952, 201050056, 634285971, 2001087460, 6313163200, 19917184799, 62836052203, 198239333473, 625418559696, 1973111833705, 6224903700199
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2013

Keywords

Comments

Column 2 of A222555.

Examples

			Some solutions for n=3:
..0....0....0....0....2....0....0....1....0....1....0....1....2....2....1....1
..3....1....2....2....0....1....1....1....0....2....0....1....2....1....0....2
..2....4....1....1....2....2....3....0....3....0....1....0....0....1....1....1
..0....0....2....1....1....0....0....2....1....2....2....1....1....1....1....0
..0....0....0....1....0....2....1....1....1....0....2....2....0....0....2....1
		

Crossrefs

Cf. A222555.

Formula

Empirical: a(n) = 5*a(n-1) - 6*a(n-2) + 2*a(n-3) - 8*a(n-4) + 12*a(n-5) - 3*a(n-6) - a(n-7).
Empirical g.f.: x*(7 - 15*x + 6*x^2 - 6*x^3 + 11*x^4 - 3*x^5 - x^6) / ((1 - x)*(1 - 4*x + 2*x^2 + 8*x^4 - 4*x^5 - x^6)). - Colin Barker, Aug 16 2018

A222550 Number of (n+3) X 1 arrays of occupancy after each element moves up to +-3 places but not 0.

Original entry on oeis.org

31, 102, 359, 1279, 4537, 15929, 56041, 197313, 694561, 2443809, 8598567, 30254246, 106446779, 374510087, 1317616614, 4635657529, 16309130459, 57378359687, 201866467555, 710197956209, 2498584711494, 8790394014302, 30925899907467
Offset: 1

Views

Author

R. H. Hardin, Feb 24 2013

Keywords

Comments

Column 3 of A222555.

Examples

			Some solutions for n=3:
..1....1....0....1....1....1....0....0....0....1....1....1....1....2....0....0
..0....0....2....1....0....1....2....1....3....2....0....0....0....1....1....0
..3....1....0....0....0....0....1....0....2....2....0....2....0....3....0....1
..0....3....2....0....1....3....1....3....0....1....3....1....1....0....3....0
..0....0....0....1....2....1....1....2....1....0....0....1....1....0....1....3
..2....1....2....3....2....0....1....0....0....0....2....1....3....0....1....2
		

Crossrefs

Cf. A222555.

Formula

Empirical: a(n) = 7*a(n-1) -15*a(n-2) +10*a(n-3) +4*a(n-4) -36*a(n-5) +73*a(n-6) -29*a(n-7) -21*a(n-8) -a(n-9).
Empirical g.f.: x*(31 - 115*x + 110*x^2 - 14*x^3 - 175*x^4 + 473*x^5 - 224*x^6 - 148*x^7 - 7*x^8) / (1 - 7*x + 15*x^2 - 10*x^3 - 4*x^4 + 36*x^5 - 73*x^6 + 29*x^7 + 21*x^8 + x^9). - Colin Barker, Aug 16 2018

A222551 Number of (n+4)X1 arrays of occupancy after each element moves up to +-4 places but not 0.

Original entry on oeis.org

121, 427, 1562, 5761, 21239, 78245, 287858, 1059674, 3901868, 14366833, 52894813, 194725954, 716822517, 2638639647, 9712504051, 35749337667, 131581046318, 484294944395, 1782459967105, 6560310404375, 24144873322163, 88863279809958
Offset: 1

Views

Author

R. H. Hardin Feb 24 2013

Keywords

Comments

Column 4 of A222555

Examples

			Some solutions for n=3
..0....0....2....2....0....4....1....0....0....0....1....1....0....0....0....0
..0....0....0....0....0....1....2....4....2....0....1....1....2....0....2....1
..0....3....3....2....1....0....2....1....2....0....0....0....0....2....2....0
..1....2....0....0....3....1....0....0....0....3....3....3....4....0....0....1
..2....2....1....2....0....0....0....1....1....2....0....2....0....4....3....4
..4....0....0....1....2....0....0....0....0....0....0....0....0....1....0....1
..0....0....1....0....1....1....2....1....2....2....2....0....1....0....0....0
		

Formula

Empirical: a(n) = 9*a(n-1) -28*a(n-2) +35*a(n-3) -15*a(n-4) +12*a(n-5) -96*a(n-6) +274*a(n-7) -265*a(n-8) +24*a(n-9) -7*a(n-10) +29*a(n-11) +3*a(n-12) -a(n-13)

A222552 Number of (n+5)X1 arrays of occupancy after each element moves up to +-5 places but not 0.

Original entry on oeis.org

456, 1668, 6220, 23341, 87752, 330274, 1244135, 4688684, 17678240, 66670133, 251457191, 948433758, 3577222198, 13491914845, 50884787739, 191905944304, 723728206116, 2729294349873, 10292348908806, 38812294765020
Offset: 1

Views

Author

R. H. Hardin Feb 24 2013

Keywords

Comments

Column 5 of A222555

Examples

			Some solutions for n=3
..0....2....1....0....0....1....1....0....0....3....0....0....1....1....0....0
..0....0....2....1....2....0....6....0....0....0....3....0....0....0....0....4
..3....0....1....1....2....0....0....0....1....1....0....4....2....2....0....0
..3....2....1....0....0....4....0....0....0....1....0....0....0....0....2....1
..0....2....0....5....1....1....0....4....0....0....0....0....0....0....1....3
..1....0....0....0....1....0....0....0....1....1....2....4....1....3....0....0
..0....0....3....1....0....1....1....2....3....2....0....0....2....2....2....0
..1....2....0....0....2....1....0....2....3....0....3....0....2....0....3....0
		

Formula

Empirical: a(n) = 11*a(n-1) -45*a(n-2) +84*a(n-3) -70*a(n-4) +21*a(n-5) +18*a(n-6) -200*a(n-7) +753*a(n-8) -1183*a(n-9) +631*a(n-10) +8*a(n-11) -2*a(n-12) +58*a(n-13) -32*a(n-14) -6*a(n-15)

A222553 Number of (n+6)X1 arrays of occupancy after each element moves up to +-6 places but not 0.

Original entry on oeis.org

1709, 6372, 24024, 91052, 346091, 1318249, 5029086, 19207812, 73418105, 280780468, 1074200514, 4110562320, 15731749698, 60212701130, 230472089415
Offset: 1

Views

Author

R. H. Hardin Feb 24 2013

Keywords

Comments

Column 6 of A222555

Examples

			Some solutions for n=3
..2....1....3....1....1....1....1....0....1....1....0....0....1....0....1....1
..0....0....1....1....1....2....2....1....3....2....0....1....5....1....1....2
..0....2....2....2....0....4....0....0....0....0....0....0....1....0....3....0
..0....2....1....0....1....0....2....1....3....4....0....4....0....2....0....2
..0....0....1....0....0....0....0....1....0....0....1....3....1....1....0....0
..3....0....0....0....3....0....2....1....0....0....1....0....0....1....1....3
..0....3....1....1....2....1....0....0....1....0....0....0....0....3....1....1
..2....0....0....0....1....1....2....3....0....1....3....1....0....1....1....0
..2....1....0....4....0....0....0....2....1....1....4....0....1....0....1....0
		

A222554 Number of (n+7)X1 arrays of occupancy after each element moves up to +-7 places but not 0.

Original entry on oeis.org

6427, 24230, 92011, 350967, 1342944, 5151294, 19797737, 76201719, 293634727, 1132449121, 4370239031, 16873077353
Offset: 1

Views

Author

R. H. Hardin Feb 24 2013

Keywords

Comments

Column 7 of A222555

Examples

			Some solutions for n=2
..1....1....0....2....0....2....2....0....1....2....0....3....1....1....0....0
..0....0....1....4....2....1....4....2....1....0....0....0....1....1....0....1
..2....5....0....0....0....1....2....1....4....3....1....1....0....0....0....0
..0....0....3....3....0....1....0....1....0....0....0....0....0....2....2....4
..1....0....1....0....0....1....1....1....0....0....0....3....2....1....1....0
..0....1....1....0....1....1....0....0....1....0....0....1....1....0....2....0
..1....2....0....0....4....0....0....1....1....4....6....0....0....3....0....2
..3....0....0....0....0....0....0....0....0....0....2....1....2....1....4....1
..1....0....3....0....2....2....0....3....1....0....0....0....2....0....0....1
		

A222556 Number of (n+2)X1 arrays of occupancy after each element moves up to +-n places but not 0.

Original entry on oeis.org

2, 20, 102, 427, 1668, 6372, 24230, 92279, 352596
Offset: 1

Views

Author

R. H. Hardin Feb 24 2013

Keywords

Comments

Row 2 of A222555

Examples

			Some solutions for n=3
..1....3....0....0....2....0....0....2....1....2....0....0....3....2....1....1
..3....0....0....1....0....2....0....1....1....1....1....3....0....0....0....0
..0....1....3....0....2....1....4....1....1....0....2....0....0....3....4....3
..0....1....1....1....1....1....0....1....2....1....0....1....2....0....0....0
..1....0....1....3....0....1....1....0....0....1....2....1....0....0....0....1
		

A222557 Number of (n+3)X1 arrays of occupancy after each element moves up to +-n places but not 0.

Original entry on oeis.org

4, 64, 359, 1562, 6220, 24024, 92011, 352258, 1351519
Offset: 1

Views

Author

R. H. Hardin Feb 24 2013

Keywords

Comments

Row 3 of A222555

Examples

			Some solutions for n=3
..2....0....1....0....0....2....0....2....0....3....2....0....0....2....1....0
..1....1....0....0....2....1....3....0....0....0....0....2....0....1....2....0
..1....3....1....2....0....1....0....0....3....2....2....1....4....0....1....2
..0....1....2....1....0....0....1....1....0....0....1....1....2....2....0....0
..1....1....1....0....2....0....1....1....0....1....1....1....0....1....1....2
..1....0....1....3....2....2....1....2....3....0....0....1....0....0....1....2
		
Showing 1-8 of 8 results.