cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222580 Number of ways to write n=p_m-p_{m-1}+...+(-1)^{m-k}p_k with k

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 3, 2, 3, 2, 2, 2, 3, 1, 2, 2, 3, 2, 2, 1, 2, 3, 3, 1, 1, 2, 4, 2, 1, 3, 2, 2, 2, 3, 3, 2, 2, 2, 2, 6, 1, 2, 3, 4, 2, 3, 3, 2, 3, 4, 2, 4, 2, 1, 1, 4, 3, 4, 2, 4, 1, 3, 3, 2, 4, 4, 2, 3, 2, 3, 3, 3, 3, 2, 5, 1, 3, 4, 7, 4, 2, 3, 2, 1, 5, 2, 4, 2, 7, 3, 3, 3, 4, 5, 6
Offset: 1

Views

Author

Zhi-Wei Sun, Feb 25 2013

Keywords

Comments

Conjecture: All the terms are positive.
See also the comments related to A222579.

Examples

			a(9)=2 since 9=11-7+5=19-17+13-11+7-5+3 with 12, 4, 20, 2 all practical.
a(806)=1 since 806=p_{358}-p_{357}+...+p_{150}-p_{149} with p_{358}=2411<=3*806=2418, and 2412 and p_{149}-1=858 are both practical.
		

Crossrefs

Programs

  • Mathematica
    f[n_]:=f[n]=FactorInteger[n]
    Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2])
    Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}]
    pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0)
    pp[k_]:=pp[k]=pr[Prime[k]+1]==True
    pq[k_]:=pq[k]=pr[Prime[k]-1]==True
    s[0_]:=0
    s[n_]:=s[n]=Prime[n]-s[n-1]
    a[n_]:=a[n]=Sum[If[pp[j]==True&&pq[i+1]==True&&s[j]-(-1)^(j-i)*s[i]==n,1,0],{j,PrimePi[n]+1,PrimePi[3n]},{i,0,j-2}]
    Table[a[n],{n,1,100}]