cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222590 Greatest prime representable as the arithmetic mean of two other primes in n different ways, or 0 if no such prime exists.

Original entry on oeis.org

3, 19, 31, 61, 79, 83, 199, 181, 229, 271, 277, 313, 293, 439, 389, 401, 499, 619, 601, 709, 859, 643, 787, 811, 743, 823, 1039, 1009, 1321, 1021, 1279, 1213, 1249, 1489, 1483, 1301, 1609, 1621, 1459, 1753, 1559, 1877, 2011, 2029, 1741, 1901, 2087, 2239, 2207
Offset: 0

Views

Author

Robert G. Wilson v, Feb 25 2013

Keywords

Comments

a(6681) is probably the only such term which equals zero.

Examples

			There are only two primes which are not the arithmetic mean of two other primes and they are 2 and 3. Therefore a(0)=3.
There are only three primes which are the arithmetic mean of two other primes in just one way. They are 5 = (3+7)/2, 7 = (3+11)/2, and 19 = (7+31)/2. Therefore a(1)=19.
There are only three primes which are the arithmetic mean of two other primes in just two ways. They are 11 = (3+19)/2 = (5+17)/2, 13 = (3+23)/2 = (7+19)/2, and 31 = (3+59)/2 = (19+43)/2. Therefore a(2)=31, etc.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{c = 0, k = 2, p = Prime@ n}, While[k + 1 < p, If[PrimeQ[p - k] && PrimeQ[p + k], c++ ]; k += 2]; c]; t = Table[0, {1000}]; Do[a = f@ n; If[a < 1001, t[[a + 1]] = Prime@ n; Print[{a, Prime@ n}]], {n, 5000}]; Take[t, 50]