A198472 a(n)=q(n) if 4 | q(n)-2, and a(n)=q(n)/2 if 4 | q(n), where q(n) is the least practical number q>n with 2(n+1)-q practical.
2, 2, 2, 6, 6, 4, 4, 6, 6, 8, 6, 18, 8, 18, 8, 18, 18, 10, 10, 12, 12, 14, 12, 30, 14, 30, 14, 30, 30, 16, 16, 18, 18, 20, 18, 42, 20, 42, 20, 42, 42, 54, 24, 24, 28, 54, 24, 28, 30, 54, 28, 32, 54, 28, 28, 30, 30, 32, 30, 66, 32, 66, 32, 66, 66, 78, 36, 36, 40, 78, 36, 40, 42, 78, 40, 44, 78, 40, 40, 42, 42, 44, 42, 90, 44, 90, 44, 90, 90, 52, 48, 48, 50, 50, 48, 52, 50, 54, 50, 56
Offset: 1
Keywords
Examples
a(20)=12 since 2(20+1)=24+18 with 24 and 18 both practical.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- G. Melfi, On two conjectures about practical numbers, J. Number Theory 56 (1996) 205-210 [MR96i:11106].
Programs
-
Mathematica
f[n_]:=f[n]=FactorInteger[n] Pow[n_,i_]:=Pow[n,i]=Part[Part[f[n],i],1]^(Part[Part[f[n],i],2]) Con[n_]:=Con[n]=Sum[If[Part[Part[f[n],s+1],1]<=DivisorSigma[1,Product[Pow[n,i],{i,1,s}]]+1,0,1],{s,1,Length[f[n]]-1}] pr[n_]:=pr[n]=n>0&&(n<3||Mod[n,2]+Con[n]==0) Do[Do[If[pr[2k]==True&&pr[2n+2-2k]==True,Print[n," ",2k/(1+Mod[k-1,2])];Goto[aa]],{k,Ceiling[(n+1)/2],n}]; Label[aa];Continue,{n,1,100}]
-
PARI
A198472(n) = forstep(q=n+++bittest(n,0),9e9,2, is_A005153(q) && is_A005153(2*n-q) && return(if(q%4,q,q\2))) \\ M. F. Hasler, Feb 27 2013
Comments