cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222659 Table a(m,n) read by antidiagonals, m, n >= 1, where a(m,n) is the number of divide-and-conquer partitions of an m X n rectangle into integer sub-rectangles.

This page as a plain text file.
%I A222659 #14 May 29 2013 14:57:13
%S A222659 1,2,2,4,8,4,8,34,34,8,16,148,320,148,16,32,650,3118,3118,650,32,64,
%T A222659 2864,30752,68480,30752,2864,64,128,12634,304618,1525558,1525558,
%U A222659 304618,12634,128
%N A222659 Table a(m,n) read by antidiagonals, m, n >= 1, where a(m,n) is the number of divide-and-conquer partitions of an m X n rectangle into integer sub-rectangles.
%C A222659 The divide-and-conquer partition of an integer-sided rectangle is one that can be obtained by repeated bisections into adjacent integer-sided rectangles.
%C A222659 The table is symmetric: a(m,n) = a(n,m).
%e A222659 Table begins:
%e A222659 1,      2,       4,       8,      16,     32,      64, ...
%e A222659 2,      8,      34,     148,     650,   2864,   12634, ...
%e A222659 4,     34,     320,    3118,   30752, 304618, 3022112, ...
%e A222659 8,    148,    3118,   68480, 1525558, ...
%e A222659 16,   650,   30752, 1525558, ...
%e A222659 32,  2864,  304618, ...
%e A222659 64, 12634, 3022112, ...
%e A222659 Not every partition (cf. A116694) into integer sub-rectangles is divide-and-conquer. For example, the following partition of a 3 X 3 rectangle into 5 sub-rectangles is not divide-and-conquer:
%e A222659 112
%e A222659 342
%e A222659 355
%Y A222659 a(1,n) = a(n,1) = A000079(n-1)
%Y A222659 a(2,n) = a(n,2) = A034999(n)
%Y A222659 Cf. A116694 (all partitions).
%K A222659 tabl,nonn,more
%O A222659 1,2
%A A222659 _Arsenii Abdrafikov_, May 29 2013