A222714 Smallest i such that prime(n) divides gcd(sigma(i), phi(i)) (cf. A009223).
3, 14, 88, 116, 989, 477, 6901, 7067, 6439, 10207, 4976, 10877, 13529, 44461, 79523, 22577, 250277, 62023, 107869, 161027, 75008, 49769, 55277, 183296, 75077, 612463, 381923, 412163, 712423, 153679, 32576, 137549, 450181, 154289, 1776377, 1642577, 491723, 637981, 3903791, 239777, 642251, 1572889, 1608983, 1192739, 2791489, 316409, 888731, 4773091, 4942243, 1256293
Offset: 1
Keywords
Examples
Given A009223 = 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 4, 2, 6, 8, 1, 2, 3, ... prime(1)=2 first divides A009223(3); prime(2)=3 first divides A009223(14)=6; prime(3)=5 first divides both sigma(88)=180 and phi(88)=40, so A222714(3)=88.