A222717 Primes p whose smallest positive quadratic nonresidue is not a primitive root of p.
2, 41, 43, 103, 109, 151, 157, 191, 229, 251, 271, 277, 283, 307, 311, 313, 331, 337, 367, 397, 409, 439, 457, 499, 571, 643, 683, 691, 727, 733, 739, 761, 769, 811, 911, 919, 967, 971, 991, 997, 1013, 1021, 1031, 1051, 1069, 1093, 1151, 1163, 1181, 1289
Offset: 1
Keywords
Examples
The smallest positive quadratic nonresidue of 2 is 2 itself, and 2 is not a primitive root of 2, so 2 is a member. The smallest positive quadratic nonresidue of 41 is 3, and 3 is not a primitive root of 41, so 41 is a member.
Programs
-
Mathematica
nn = 300; NR = (Table[p = Prime[n]; First[ Select[ Range[p], JacobiSymbol[#, p] != 1 &]], {n, nn}]); Select[ Prime[ Range[nn]], Mod[ NR[[PrimePi[#]]], #] == 0 || MultiplicativeOrder[ NR[[PrimePi[#]]], #] < # - 1 &]
Comments