This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222757 #6 Mar 17 2024 16:16:55 %S A222757 1,2,4,0,3,5,7,10,8,16,6,11,13,14,9,17,23,20,12,15,22,27,29,18,19,21, %T A222757 26,28,33,24,31,46,25,34,37,40,41,30,36,44,32,35,43,39,42,49,38,45,50, %U A222757 55,58,62,56,51,52,47,53,65,59,63,67,48,54,57,61,73 %N A222757 Irregular table of conjectured indices of Fibonacci numbers with exactly n 0-bits in their binary representation. %C A222757 Every nonnegative integer appears. %H A222757 T. D. Noe, <a href="/A222757/b222757.txt">Rows n = 0..1000 of irregular triangle, flattened</a> %e A222757 The irregular table begins %e A222757 {1, 2, 4}, %e A222757 {0, 3, 5, 7, 10}, %e A222757 {8, 16}, %e A222757 {6, 11, 13, 14}, %e A222757 {9, 17, 23}, %e A222757 {20}, %e A222757 {12, 15}, %e A222757 {22, 27, 29}, %e A222757 {18, 19, 21, 26, 28}, %e A222757 {33}, %e A222757 {24, 31, 46}, %e A222757 {25, 34, 37, 40, 41} %t A222757 nn = 100; f = Fibonacci[Range[0, nn]]; t2 = Transpose[{Range[0, nn], f}]; Table[Select[Range[nn + 1], Count[IntegerDigits[t2[[#, 2]], 2], 0] == n &] - 1, {n, 0, nn/5}] %t A222757 Insert[Flatten[Module[{nn=100,dc},dc=DigitCount[Fibonacci[Range[nn]],2,0];Table[Position[dc,n],{n,0,30}]]],0,4] (* _Harvey P. Dale_, Mar 17 2024 *) %Y A222757 Cf. A004685 (Fibonacci numbers in binary), A222601, A222602, A222758. %K A222757 nonn,tabf %O A222757 0,2 %A A222757 _T. D. Noe_, Mar 11 2013