This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222817 #32 Jan 09 2025 10:15:33 %S A222817 2,3,2,4,2,5,3,6,2,3,5,7,2,4,8,4,9,2,3,5,7,10,2,3,5,11,5,6,12,2,3,4,6, %T A222817 9,13,2,3,4,7,11,14,3,7,15,2,4,5,8,10,11,16,2,5,7,8,17,3,4,6,7,9,14, %U A222817 18,2,3,4,6,9,13,19 %N A222817 Irregular triangle read by rows: row n gives list of nontrivial reverse multipliers for base n. %C A222817 If there is a number m such that the reversal of m in base n is c times m, then c is called a reverse multiplier for n. For example, 2 is a reverse multiplier for base n=5, since 8 (base 10) = 13 (base 5), and 2*8 = 16 (base 10) = 31 (base 5). %C A222817 The trivial reverse multiplier 1 is excluded. %C A222817 The last entry in each row is n-1; the number of terms in row n is A222819(n). %H A222817 N. J. A. Sloane, <a href="/A222817/a222817.txt">Table giving n, list of nontrivial reverse multipliers, for n = 3..100</a> %H A222817 N. J. A. Sloane, <a href="http://arxiv.org/abs/1307.0453">2178 And All That</a>, arXiv:1307.0453 [math.NT], 2013; Fib. Quart., 52 (2014), 99-120. %H A222817 N. J. A. Sloane, <a href="/A001232/a001232.pdf">2178 And All That</a> [Local copy] %H A222817 Anne Ludington Young, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Scanned/30-2/ludington1.pdf">k-Reverse multiples</a>, Fib. Q., 30 (1992), 126-132. %e A222817 Triangle begins: %e A222817 2, %e A222817 3, %e A222817 2,4, %e A222817 2,5, %e A222817 3,6, %e A222817 2,3,5,7, %e A222817 2,4,8, %e A222817 4,9, %e A222817 2,3,5,7,10, %e A222817 2,3,5,11, %e A222817 5,6,12, %e A222817 2,3,4,6,9,13, %e A222817 2,3,4,7,11,14, %e A222817 3,7,15, %e A222817 ... %Y A222817 Cf. A214927, A222818, A222819, A222820. %Y A222817 See A214927 for other cross-references. %K A222817 nonn,tabf %O A222817 3,1 %A A222817 _N. J. A. Sloane_, Mar 13 2013