cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222838 T(n,k)=Number of nXk 0..3 arrays with no element equal to another at a city block distance of exactly two, and new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 2, 2, 3, 7, 3, 7, 24, 24, 7, 19, 96, 72, 96, 19, 55, 384, 216, 216, 384, 55, 163, 1536, 648, 600, 648, 1536, 163, 487, 6144, 1944, 1536, 1536, 1944, 6144, 487, 1459, 24576, 5832, 4056, 4032, 4056, 5832, 24576, 1459, 4375, 98304, 17496, 10584, 9600, 9600, 10584
Offset: 1

Views

Author

R. H. Hardin Mar 06 2013

Keywords

Comments

Table starts
.....1.......2.......3.......7......19......55.....163......487.....1459
.....2.......7......24......96.....384....1536....6144....24576....98304
.....3......24......72.....216.....648....1944....5832....17496....52488
.....7......96.....216.....600....1536....4056...10584....27744....72600
....19.....384.....648....1536....4032....9600...22848....55296...133824
....55....1536....1944....4056....9600...24576...55296...124416...279936
...163....6144....5832...10584...22848...55296..138240...301056...642048
...487...24576...17496...27744...55296..124416..301056...743424..1572864
..1459...98304...52488...72600..133824..279936..642048..1572864..3833856
..4375..393216..157464..190104..322944..645504.1382400..3250176..7962624
.13123.1572864..472392..497664..779328.1476096.3022848..6690816.15925248
.39367.6291456.1417176.1302936.1881600.3393024.6690816.14155776.31850496

Examples

			Some solutions for n=4 k=4
..0..0..1..2....0..1..2..3....0..0..1..2....0..0..1..2....0..1..1..2
..2..2..1..0....2..3..0..0....1..3..3..0....2..3..3..2....2..2..0..3
..1..3..3..0....2..3..1..1....1..2..2..0....1..1..0..0....1..3..0..1
..1..0..2..2....1..0..2..2....0..0..1..3....0..2..2..3....0..3..2..2
		

Crossrefs

Column 1 is A052919(n-2)

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2) for n>4
k=2: a(n) = 4*a(n-1) for n>3
k=3: a(n) = 3*a(n-1) for n>2
k=4: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3) for n>4
k=5: a(n) = 2*a(n-1) +2*a(n-3) +a(n-4) for n>7
k=6: a(n) = 2*a(n-1) +2*a(n-2) -4*a(n-3) +4*a(n-4) -4*a(n-5) +2*a(n-6) -6*a(n-7) +a(n-10) for n>14
k=7: a(n) = 2*a(n-1) +a(n-3) -2*a(n-4) +4*a(n-5) +a(n-6) -a(n-9) for n>14