A222838 T(n,k)=Number of nXk 0..3 arrays with no element equal to another at a city block distance of exactly two, and new values 0..3 introduced in row major order.
1, 2, 2, 3, 7, 3, 7, 24, 24, 7, 19, 96, 72, 96, 19, 55, 384, 216, 216, 384, 55, 163, 1536, 648, 600, 648, 1536, 163, 487, 6144, 1944, 1536, 1536, 1944, 6144, 487, 1459, 24576, 5832, 4056, 4032, 4056, 5832, 24576, 1459, 4375, 98304, 17496, 10584, 9600, 9600, 10584
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..1..2....0..1..2..3....0..0..1..2....0..0..1..2....0..1..1..2 ..2..2..1..0....2..3..0..0....1..3..3..0....2..3..3..2....2..2..0..3 ..1..3..3..0....2..3..1..1....1..2..2..0....1..1..0..0....1..3..0..1 ..1..0..2..2....1..0..2..2....0..0..1..3....0..2..2..3....0..3..2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..312
Crossrefs
Column 1 is A052919(n-2)
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2) for n>4
k=2: a(n) = 4*a(n-1) for n>3
k=3: a(n) = 3*a(n-1) for n>2
k=4: a(n) = 2*a(n-1) +2*a(n-2) -a(n-3) for n>4
k=5: a(n) = 2*a(n-1) +2*a(n-3) +a(n-4) for n>7
k=6: a(n) = 2*a(n-1) +2*a(n-2) -4*a(n-3) +4*a(n-4) -4*a(n-5) +2*a(n-6) -6*a(n-7) +a(n-10) for n>14
k=7: a(n) = 2*a(n-1) +a(n-3) -2*a(n-4) +4*a(n-5) +a(n-6) -a(n-9) for n>14
Comments