A222865 Weakly graded (3+1)-free partially ordered sets (posets) on n labeled vertices.
1, 1, 3, 19, 195, 2551, 41343, 826939, 20616795, 658486351, 28264985223, 1725711709459, 155998194920835, 21019550046219271, 4162663551546902223, 1192847436856343300779, 489879387071459457083115, 286844271719979335180726911, 238844671940165660117456403543
Offset: 0
Keywords
Links
- J. B. Lewis and Y. X. Zhang, Enumeration of Graded (3+1)-Avoiding Posets, To appear, J. Combinatorial Theory, Series A.
Crossrefs
Programs
-
Mathematica
m = maxExponent = 19; Psi[x_] = Sum[E^(2^n x) x^n/n!, {n, 0, m}] + O[x]^m; W[x_, y_] = (1-x)y/x + (2x^3 + (x^3 - 2x^2)y)/(2x^2 + x + (x^2-2x-1) y); CoefficientList[W[E^x, Psi[x]] + O[x]^m, x] Range[0, m-1]! (* Jean-François Alcover, Dec 11 2018 *)
Formula
G.f. is W(e^x, Psi(x)) where W(x, y) = (1 - x)y/x + (2x^3 + (x^3 - 2x^2)y)/(2x^2 + x + (x^2 - 2x - 1)y) and Psi(x) is the GF for A047863.
Comments