A242472 T(n,k)=Number of length n+2 0..k arrays with no three equal elements in a row and new values 0..k introduced in 0..k order.
3, 4, 5, 4, 11, 8, 4, 12, 30, 13, 4, 12, 40, 82, 21, 4, 12, 41, 143, 224, 34, 4, 12, 41, 158, 528, 612, 55, 4, 12, 41, 159, 663, 1979, 1672, 89, 4, 12, 41, 159, 684, 2944, 7466, 4568, 144, 4, 12, 41, 159, 685, 3204, 13537, 28246, 12480, 233, 4, 12, 41, 159, 685, 3232
Offset: 1
Examples
Some solutions for n=4 k=4 ..0....0....0....0....0....0....0....0....0....0....0....0....0....0....0....0 ..1....1....1....1....1....1....0....1....1....1....1....1....1....1....1....0 ..0....2....2....1....1....0....1....2....2....2....1....1....2....2....2....1 ..1....2....3....2....2....2....2....0....1....3....2....0....3....3....3....0 ..2....3....3....3....3....3....3....1....3....1....1....0....0....3....4....2 ..3....0....0....2....4....3....3....0....0....2....1....1....4....2....3....0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..9999
Crossrefs
Formula
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 2*a(n-1) +2*a(n-2)
k=3: a(n) = 4*a(n-1) +a(n-2) -6*a(n-3) -3*a(n-4)
k=4: a(n) = 7*a(n-1) -7*a(n-2) -20*a(n-3) +10*a(n-4) +24*a(n-5) +8*a(n-6)
k=5: [order 8]
k=6: [order 10]
k=7: [order 12]
k=8: [order 14]
Comments