cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A222932 Sum of neighbor maps: number of nX4 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their horizontal and antidiagonal neighbors in a random 0..3 nX4 array.

Original entry on oeis.org

16, 256, 4000, 63488, 1048352, 16777216, 268435456, 4294962688, 68702699520, 1099511601152, 17592186044416, 281474976710656, 4503599627247616, 72057490958712832, 1152921504604356608, 18446744073709551616
Offset: 1

Views

Author

R. H. Hardin Mar 09 2013

Keywords

Comments

Column 4 of A222935

Examples

			Some solutions for n=3
..1..0..1..0....0..1..0..1....1..1..0..1....0..0..1..0....0..1..0..1
..0..1..0..0....1..0..0..1....0..0..1..1....0..1..0..0....0..1..1..1
..0..1..0..0....0..0..0..0....0..0..0..0....1..1..0..0....1..0..0..1
		

Formula

Empirical: a(n) = 16*a(n-1) +8352*a(n-5) -133632*a(n-6) -18096384*a(n-10) +289542144*a(n-11) +2753724416*a(n-15) -44059590656*a(n-16) -143077146624*a(n-20) +2289234345984*a(n-21) +2757369004032*a(n-25) -44117904064512*a(n-26) -17592186044416*a(n-30) +281474976710656*a(n-31)

A222933 Sum of neighbor maps: number of nX5 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their horizontal and antidiagonal neighbors in a random 0..3 nX5 array.

Original entry on oeis.org

24, 1024, 32760, 1047664, 33553920, 1073741824, 34359738368, 1099511627776, 35184372088448, 1125899904556032, 36028797018701824, 1152921504606846976, 36893488147419103232, 1180591620717411303424, 37778931862957161699328
Offset: 1

Views

Author

R. H. Hardin Mar 09 2013

Keywords

Comments

Column 5 of A222935

Examples

			Some solutions for n=3
..1..0..1..1..1....1..0..0..1..0....0..0..0..1..1....1..0..1..0..1
..1..1..0..1..0....1..1..0..1..0....0..1..1..1..0....0..0..1..1..1
..0..1..1..1..1....0..1..0..1..0....0..1..0..0..1....1..1..1..1..0
		

Formula

Empirical: a(n) = 32*a(n-1) +2720*a(n-6) -87040*a(n-7) -2580736*a(n-12) +82583552*a(n-13) +1038909440*a(n-18) -33245102080*a(n-19) -194784526336*a(n-24) +6233104842752*a(n-25) +17021492264960*a(n-30) -544687752478720*a(n-31) -692761044975616*a(n-36) +22168353439219712*a(n-37) +11962686510202880*a(n-42) -382805968326492160*a(n-43) -72057594037927936*a(n-48) +2305843009213693952*a(n-49) for n>50

A222936 Sum of neighbor maps: number of 2Xn binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their horizontal and antidiagonal neighbors in a random 0..3 2Xn array.

Original entry on oeis.org

4, 16, 48, 256, 1024, 4096, 15820, 65536, 262144, 1048576, 4182016, 16777216, 67108864, 268435456, 1073476576, 4294967296, 17179869184, 68719476736, 274872664064, 1099511627776, 4398046511104, 17592186044416, 70368643424320
Offset: 1

Views

Author

R. H. Hardin Mar 09 2013

Keywords

Comments

Row 2 of A222935

Examples

			Some solutions for n=3
..1..0..0....0..1..1....1..0..1....0..0..0....0..0..0....0..0..1....0..0..1
..1..1..0....1..0..0....0..0..0....0..1..0....1..0..1....0..1..1....1..1..0
		

Formula

Empirical: a(n) = 4*a(n-1) +32*a(n-4) -128*a(n-5) -212*a(n-8) +848*a(n-9) -1408*a(n-12) +5632*a(n-13) +10576*a(n-16) -42304*a(n-17) +22016*a(n-20) -88064*a(n-21) -171456*a(n-24) +685824*a(n-25) -149504*a(n-28) +598016*a(n-29) +1181696*a(n-32) -4726784*a(n-33) +458752*a(n-36) -1835008*a(n-37) -3653632*a(n-40) +14614528*a(n-41) -524288*a(n-44) +2097152*a(n-45) +4194304*a(n-48) -16777216*a(n-49)

A222937 Sum of neighbor maps: number of 3Xn binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their horizontal and antidiagonal neighbors in a random 0..3 3Xn array.

Original entry on oeis.org

8, 64, 512, 4000, 32760, 262104, 2097152, 16777216, 134217728, 1073741824, 8589499198, 68719476736, 549755813888, 4398046511104, 35184372088832, 281474975268864, 2251799813683712, 18014398509056000, 144115188075855872
Offset: 1

Views

Author

R. H. Hardin Mar 09 2013

Keywords

Comments

Row 3 of A222935

Examples

			Some solutions for n=3
..0..0..0....1..0..1....0..1..1....0..0..1....0..0..1....0..1..1....1..1..0
..0..0..0....0..0..0....0..1..1....1..1..1....0..0..1....1..0..1....0..0..0
..1..0..0....1..0..1....0..0..0....0..0..1....1..1..1....0..0..0....0..0..0
		

A222934 Sum of neighbor maps: number of nX6 binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their horizontal and antidiagonal neighbors in a random 0..3 nX6 array.

Original entry on oeis.org

64, 4096, 262104, 16776992, 1073741824, 68719413208, 4398046511104, 281474976710656, 18014398509481984
Offset: 1

Views

Author

R. H. Hardin Mar 09 2013

Keywords

Comments

Column 6 of A222935

Examples

			Some solutions for n=3
..0..0..0..1..0..0....0..1..1..0..1..1....0..1..1..0..1..0....0..0..1..0..1..0
..1..0..0..1..0..0....0..0..1..1..0..1....1..1..1..0..1..0....0..0..1..1..1..0
..0..1..0..0..0..1....1..1..1..1..0..1....0..1..1..0..1..0....1..0..1..1..1..1
		

A222938 Sum of neighbor maps: number of 4Xn binary arrays indicating the locations of corresponding elements equal to the sum mod 4 of their horizontal and antidiagonal neighbors in a random 0..3 4Xn array.

Original entry on oeis.org

16, 232, 4096, 63488, 1047664, 16776992, 268435456, 4294967296, 68702202624, 1099511627776, 17592186044416, 281474975006720, 4503599620030464, 72057490958712832, 1152921504606846976, 18446744073700638720
Offset: 1

Views

Author

R. H. Hardin Mar 09 2013

Keywords

Comments

Row 4 of A222935

Examples

			Some solutions for n=3
..1..1..1....0..0..1....0..0..1....0..0..1....0..0..1....0..0..0....0..0..1
..0..1..0....0..1..1....0..0..0....1..0..0....0..0..1....0..1..0....0..1..1
..1..1..1....0..0..1....1..1..0....0..1..0....0..0..0....1..1..0....1..0..0
..0..1..0....0..0..0....1..1..0....0..0..0....0..1..1....0..0..1....0..0..0
		
Showing 1-6 of 6 results.