This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222955 #12 Jul 23 2025 03:18:49 %S A222955 2,2,4,4,8,8,20,18,52,48,152,138,472,428,1520,1392,5044,4652,17112, %T A222955 15884,59008,55124,206260,193724,729096,688008,2601640,2465134, %U A222955 9358944,8899700,33904324,32342236,123580884,118215780,452902072,434314138,1667837680 %N A222955 Number of nX1 0..1 arrays with every row and column least squares fitting to a zero slope straight line, with a single point array taken as having zero slope. %C A222955 Column 1 of A222959 %C A222955 Conjecture: A binary word is counted iff it has the same sum of positions of 1's as its reverse, or, equivalently, the same sum of partial sums as its reverse. - _Gus Wiseman_, Jan 07 2023 %H A222955 R. H. Hardin, <a href="/A222955/b222955.txt">Table of n, a(n) for n = 1..210</a> %e A222955 All solutions for n=4 %e A222955 ..0....1....1....0 %e A222955 ..0....1....0....1 %e A222955 ..0....1....0....1 %e A222955 ..0....1....1....0 %e A222955 From _Gus Wiseman_, Jan 07 2023: (Start) %e A222955 The a(1) = 2 through a(7) = 20 binary words with least squares fit a line of zero slope are: %e A222955 (0) (00) (000) (0000) (00000) (000000) (0000000) %e A222955 (1) (11) (010) (0110) (00100) (001100) (0001000) %e A222955 (101) (1001) (01010) (010010) (0010100) %e A222955 (111) (1111) (01110) (011110) (0011100) %e A222955 (10001) (100001) (0100010) %e A222955 (10101) (101101) (0101010) %e A222955 (11011) (110011) (0110001) %e A222955 (11111) (111111) (0110110) %e A222955 (0111001) %e A222955 (0111110) %e A222955 (1000001) %e A222955 (1000110) %e A222955 (1001001) %e A222955 (1001110) %e A222955 (1010101) %e A222955 (1011101) %e A222955 (1100011) %e A222955 (1101011) %e A222955 (1110111) %e A222955 (1111111) %e A222955 (End) %Y A222955 These words appear to be ranked by A359402. %Y A222955 A011782 counts compositions. %Y A222955 A359042 adds up partial sums of standard compositions, reversed A029931. %Y A222955 Cf. A053632, A070925, A231204, A318283, A359043. %K A222955 nonn %O A222955 1,1 %A A222955 _R. H. Hardin_, Mar 10 2013