cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A222955 Number of nX1 0..1 arrays with every row and column least squares fitting to a zero slope straight line, with a single point array taken as having zero slope.

This page as a plain text file.
%I A222955 #12 Jul 23 2025 03:18:49
%S A222955 2,2,4,4,8,8,20,18,52,48,152,138,472,428,1520,1392,5044,4652,17112,
%T A222955 15884,59008,55124,206260,193724,729096,688008,2601640,2465134,
%U A222955 9358944,8899700,33904324,32342236,123580884,118215780,452902072,434314138,1667837680
%N A222955 Number of nX1 0..1 arrays with every row and column least squares fitting to a zero slope straight line, with a single point array taken as having zero slope.
%C A222955 Column 1 of A222959
%C A222955 Conjecture: A binary word is counted iff it has the same sum of positions of 1's as its reverse, or, equivalently, the same sum of partial sums as its reverse. - _Gus Wiseman_, Jan 07 2023
%H A222955 R. H. Hardin, <a href="/A222955/b222955.txt">Table of n, a(n) for n = 1..210</a>
%e A222955 All solutions for n=4
%e A222955 ..0....1....1....0
%e A222955 ..0....1....0....1
%e A222955 ..0....1....0....1
%e A222955 ..0....1....1....0
%e A222955 From _Gus Wiseman_, Jan 07 2023: (Start)
%e A222955 The a(1) = 2 through a(7) = 20 binary words with least squares fit a line of zero slope are:
%e A222955   (0)  (00)  (000)  (0000)  (00000)  (000000)  (0000000)
%e A222955   (1)  (11)  (010)  (0110)  (00100)  (001100)  (0001000)
%e A222955              (101)  (1001)  (01010)  (010010)  (0010100)
%e A222955              (111)  (1111)  (01110)  (011110)  (0011100)
%e A222955                             (10001)  (100001)  (0100010)
%e A222955                             (10101)  (101101)  (0101010)
%e A222955                             (11011)  (110011)  (0110001)
%e A222955                             (11111)  (111111)  (0110110)
%e A222955                                                (0111001)
%e A222955                                                (0111110)
%e A222955                                                (1000001)
%e A222955                                                (1000110)
%e A222955                                                (1001001)
%e A222955                                                (1001110)
%e A222955                                                (1010101)
%e A222955                                                (1011101)
%e A222955                                                (1100011)
%e A222955                                                (1101011)
%e A222955                                                (1110111)
%e A222955                                                (1111111)
%e A222955 (End)
%Y A222955 These words appear to be ranked by A359402.
%Y A222955 A011782 counts compositions.
%Y A222955 A359042 adds up partial sums of standard compositions, reversed A029931.
%Y A222955 Cf. A053632, A070925, A231204, A318283, A359043.
%K A222955 nonn
%O A222955 1,1
%A A222955 _R. H. Hardin_, Mar 10 2013