This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A222964 #41 Jan 23 2025 17:33:11 %S A222964 0,13,37,76,124,189,261,352,448,565,685,828,972,1141,1309,1504,1696, %T A222964 1917,2133,2380,2620,2893,3157,3456,3744,4069,4381,4732,5068,5445, %U A222964 5805,6208,6592,7021,7429,7884,8316,8797,9253,9760,10240,10773,11277,11836,12364,12949,13501,14112,14688 %N A222964 Numbers k such that 25*k+36 is a square. %C A222964 Also, numbers of the form 25m^2+12*m, where m = 0,-1,1,-2,2,-3,3,... - _Bruno Berselli_, Apr 07 2013 %H A222964 Vincenzo Librandi, <a href="/A222964/b222964.txt">Table of n, a(n) for n = 1..1000</a> %H A222964 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A222964 G.f.: x^2*(13+24*x+13*x^2)/((1+x)^2*(1-x)^3). %F A222964 a(n) = (50*n*(n-1)+(2*n-1)*(-1)^n+1)/8. %F A222964 a(n) = a(n-1)+2*a(n-2)-2*a(n-3)-a(n-4)+a(n-5). %F A222964 Sum_{n>=2} 1/a(n) = 25/144 - tan(Pi/50)*Pi/12. - _Amiram Eldar_, Feb 16 2023 %t A222964 Select[Range[0, 10000], IntegerQ[Sqrt[25 # + 36]]&] (* or *) CoefficientList[Series[x (13 + 24 x + 13 x^2)/((1+x)^2(1-x)^3), {x, 0, 40}], x] %t A222964 LinearRecurrence[{1,2,-2,-1,1},{0,13,37,76,124},50] (* _Harvey P. Dale_, Jan 23 2025 *) %o A222964 (Magma) [n: n in [0..15000] | IsSquare(25*n+36)]; %o A222964 (Magma) I:=[0, 13, 37, 76, 124]; [n le 5 select I[n] else Self(n-1)+2*Self(n-2)-2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..50]]; %o A222964 (Magma) [0] cat [25*m^2+12*m where m is n*t: t in [-1, 1], n in [1..20]]; // _Bruno Berselli_, Apr 07 2013 %Y A222964 Cf. numbers n such that k^2*n+(k+1)^2 is a square: A028552 (k=2), A218864 (k=3), A165717 (k=4). %Y A222964 Cf. numbers of the form k^2*m^2+floor(k^2/2)*m, where m=0,-1,1,-2,2,-3,3,...: A002378 (k=2), A185039 (k=3), A033996 (k=4), this sequence (k=5), A163758 (k=6). %K A222964 nonn,easy %O A222964 1,2 %A A222964 _Vincenzo Librandi_, Apr 07 2013