A223036 Primes p whose smallest positive quadratic nonresidue is a primitive root of p.
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 107, 113, 127, 131, 137, 139, 149, 163, 167, 173, 179, 181, 193, 197, 199, 211, 223, 227, 233, 239, 241, 257, 263, 269, 281, 293, 317, 347, 349, 353, 359, 373, 379, 383
Offset: 1
Keywords
Examples
The smallest positive quadratic nonresidue of 3 is 2, and 2 is a primitive root of 3, so 3 is a member.
Programs
-
Mathematica
nn = 100; NR = (Table[p = Prime[n]; First[ Select[ Range[p], JacobiSymbol[#, p] != 1 &]], {n, nn}]); Select[ Prime[ Range[nn]], MultiplicativeOrder[ NR[[PrimePi[#]]], #] == # - 1 &]
Comments