This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223076 #5 Mar 14 2013 13:07:29 %S A223076 1,1,3,25,433,14929,1009039,134378493,35413549073,18529994604561, %T A223076 19287258947192299,39990414610486392193,165330456559779835205073, %U A223076 1363910437230335758822062353,22464490025153709857947688719687,739043653017364758151896078253911765 %N A223076 O.g.f. satisfies: A(x) = Sum_{n>=0} n^n * x^n * A(2*n*x)^n/n! * exp(-n*x*A(2*n*x)). %C A223076 Compare to the LambertW identity: %C A223076 Sum_{n>=0} n^n * x^n * G(x)^n/n! * exp(-n*x*G(x)) = 1/(1 - x*G(x)). %F A223076 a(4*n+2) == 3 (mod 4) for n>=0; a(n) == 1 (mod 2) for n>=0. %e A223076 O.g.f.: A(x) = 1 + x + 3*x^2 + 25*x^3 + 433*x^4 + 14929*x^5 + 1009039*x^6 +... %e A223076 where %e A223076 A(x) = 1 + x*A(2*x)*exp(-x*A(2*x)) + 2^2*x^2*A(4*x)^2/2!*exp(-2*x*A(4*x)) + 3^3*x^3*A(6*x)^3/3!*exp(-3*x*A(6*x)) + 4^4*x^4*A(8*x)^4/4!*exp(-4*x*A(8*x)) + 5^5*x^5*A(10*x)^5/5!*exp(-5*x*A(10*x)) +... %e A223076 simplifies to a power series in x with integer coefficients. %o A223076 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, k^k*x^k*subst(A, x, 2*k*x)^k/k!*exp(-k*x*subst(A, x, 2*k*x)+x*O(x^n)))); polcoeff(A, n)} %o A223076 for(n=0, 20, print1(a(n), ", ")) %Y A223076 Cf. A223075, A218672, A217900. %K A223076 nonn %O A223076 0,3 %A A223076 _Paul D. Hanna_, Mar 14 2013