This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223078 #10 Apr 23 2019 23:53:06 %S A223078 75,315,1275,5115,19275,20475,76875,81915,307275,322875,327675, %T A223078 1228875,1290555,1310715,4915275,4934475,5161275,5223675,5242875, %U A223078 19660875,19741515,20644155,20890875,20971515,78643275,78720075,78969675,82575675,82652475,83559675 %N A223078 Positive integers with the property that if the base-4 representation is reversed the result is three times the original number. %C A223078 From _Robert Israel_, Apr 23 2019: (Start) %C A223078 All terms are divisible by 15. %C A223078 If x is a term and x < 4^k, then x*(4^k+1) is a term. In particular the sequence is infinite. (End) %H A223078 Robert Israel, <a href="/A223078/b223078.txt">Table of n, a(n) for n = 1..985</a> %p A223078 rev4:= proc(n) local L,i; %p A223078 L:= convert(n,base,4); %p A223078 add(L[-i]*4^(i-1),i=1..nops(L)) %p A223078 end proc: %p A223078 Res:= NULL: %p A223078 for d from 2 to 15 do %p A223078 d1:= ceil(d/2); d2:= d-d1; %p A223078 for a from 4^(d1-1) to 4^d1/3 do %p A223078 b:= rev4(a)/3 mod 4^d2; %p A223078 x:= 4^d2*a+b; %p A223078 if rev4(x) = 3*x then Res:= Res, x; fi %p A223078 od od: %p A223078 Res; # _Robert Israel_, Apr 23 2019 %t A223078 Select[Range[84*10^6],3#==FromDigits[Reverse[IntegerDigits[#,4]],4]&] (* _Harvey P. Dale_, Mar 03 2018 *) %Y A223078 Cf. A173951, A223077, A223079, A214927. %K A223078 nonn,base %O A223078 1,1 %A A223078 _N. J. A. Sloane_, Mar 14 2013 %E A223078 More terms from _Alois P. Heinz_, Mar 14 2013