This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A223135 #28 Aug 02 2019 03:43:01 %S A223135 1,1,1,1,2,1,2,1,2,2,2,1,4,1,2,2,3,1,4,1,4,2,2,1,5,2,2,2,4,1,5,1,3,2, %T A223135 2,2,7,1,2,2,5,1,5,1,4,4,2,1,7,2,4,2,4,1,5,2,5,2,2,1,10,1,2,4,4,2,5,1, %U A223135 4,2,5,1,10,1,2,4,4,2,5,1,7,3,2,1,10,2,2,2,5,1,8,2,4,2,2,2,7,1,4,4,8,1,5,1,5,5 %N A223135 Number of distinct sums i + j + k with i, j, k >= 0, i*j*k = n and gcd(i,j,k) <= 1. %C A223135 Note that gcd(0,m) = m for any m. %H A223135 Antti Karttunen, <a href="/A223135/b223135.txt">Table of n, a(n) for n = 0..10001</a> (terms n = 0..100 from Robert Price) %t A223135 f[n_] := Length[Complement[Union[Flatten[Table[If[i*j*k == n && GCD[i, j, k] ≤ 1, {i + j + k}], {i, 0, n}, {j, 0, n}, {k, 0, n}], 2]], {Null}]]; Table[f[n], {n, 0, 100}] %o A223135 (PARI) A223135(n) = { my(sums=Set()); if(!n,1,fordiv(n, i, for(j=i, (n/i), if(!(n%j),for(k=j, n/(i*j), if((i*j*k==n)&&(gcd(i,gcd(j,k))<=1), sums = Set(concat(sums, (i+j+k)))))))); length(sums)); }; \\ _Antti Karttunen_, Oct 21 2017 %Y A223135 Cf. A226357, A226359, A222945, A222947, A223133, A223134, A226378. %K A223135 nonn %O A223135 0,5 %A A223135 _Robert Price_, Jun 12 2013 %E A223135 More terms from _Antti Karttunen_, Oct 21 2017