cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223181 Rolling icosahedron footprints: number of n X 3 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, vertical or antidiagonal neighbor moves along an icosahedral edge.

Original entry on oeis.org

25, 80, 400, 2080, 10880, 56960, 298240, 1561600, 8176640, 42813440, 224174080, 1173790720, 6146048000, 32181125120, 168502558720, 882290851840, 4619734876160, 24189245849600, 126656535592960, 663182230159360
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2013

Keywords

Comments

Column 3 of A223186.

Examples

			Some solutions for n=3:
..0..7..1....0..2..6....0..5..7....0..2..6....0..5.10....0..6..4....0..7..1
..5..0..2....6..0..2....7.11..5....6..4..2....7.11..5....5.10..6....1..0..2
..7..1..0....2..1..0....5..7.11....2..6..4....5.10..6....6..5..0....2..1..8
Vertex neighbors:
0 -> 1 2 5 6 7
1 -> 0 2 3 7 8
2 -> 0 1 4 6 8
3 -> 1 7 8 9 11
4 -> 2 6 8 9 10
5 -> 0 6 7 10 11
6 -> 0 2 4 5 10
7 -> 0 1 3 5 11
8 -> 1 2 3 4 9
9 -> 3 4 8 10 11
10 -> 4 5 6 9 11
11 -> 3 5 7 9 10
		

Crossrefs

Cf. A223186.

Formula

Empirical: a(n) = 6*a(n-1) - 4*a(n-2) for n>3.
Conjectures from Colin Barker, Aug 17 2018: (Start)
G.f.: 5*x*(5 - 14*x + 4*x^2) / (1 - 6*x + 4*x^2).
a(n) = sqrt(5)*((3-sqrt(5))^n*(1+sqrt(5)) + (-1+sqrt(5))*(3+sqrt(5))^n) for n>1.
(End)