A223184 Rolling icosahedron footprints: number of nX6 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, vertical or antidiagonal neighbor moves along an icosahedral edge.
3125, 5120, 56960, 738720, 10117600, 141047120, 1978496760, 27809548920, 391129835720, 5502120113200, 77403634963000, 1088923059178480, 15319126239416880, 215511834396404680, 3031854469386423040
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..5..7..1..2..8....0..7..5..0..7..5....0..1..2..0..1..7....0..2..1..3..7.11 ..7.11..3..8..1..2....1..0..7..1..0..7....2..0..1..2..0..1....1..0..7..1..3..7 ..3..7..1..3..8..4....7..1..0..7..5..0....6..2..8..1..7..3....7..1..0..7.11..5 Vertex neighbors: 0 -> 1 2 5 6 7 1 -> 0 2 3 7 8 2 -> 0 1 4 6 8 3 -> 1 7 8 9 11 4 -> 2 6 8 9 10 5 -> 0 6 7 10 11 6 -> 0 2 4 5 10 7 -> 0 1 3 5 11 8 -> 1 2 3 4 9 9 -> 3 4 8 10 11 10 -> 4 5 6 9 11 11 -> 3 5 7 9 10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 34*a(n-1) -485*a(n-2) +4346*a(n-3) -28802*a(n-4) +150848*a(n-5) -636337*a(n-6) +2159092*a(n-7) -5838756*a(n-8) +12438350*a(n-9) -20709448*a(n-10) +27153588*a(n-11) -29621182*a(n-12) +31551558*a(n-13) -39983024*a(n-14) +57518400*a(n-15) -77018236*a(n-16) +86977128*a(n-17) -80388139*a(n-18) +58849554*a(n-19) -31645539*a(n-20) +11534636*a(n-21) -3954177*a(n-22) +4130000*a(n-23) -5090133*a(n-24) +4343740*a(n-25) -2741059*a(n-26) +1290058*a(n-27) -452154*a(n-28) +127180*a(n-29) -31889*a(n-30) +7256*a(n-31) -1428*a(n-32) +212*a(n-33) -16*a(n-34) for n>37
Comments