A223186 T(n,k) = Rolling icosahedron footprints: number of n X k 0..11 arrays starting with 0 where 0..11 label vertices of an icosahedron and every array movement to a horizontal, vertical or antidiagonal neighbor moves along an icosahedral edge.
1, 5, 5, 25, 20, 25, 125, 80, 80, 125, 625, 320, 400, 320, 625, 3125, 1280, 2080, 2080, 1280, 3125, 15625, 5120, 10880, 14560, 10880, 5120, 15625, 78125, 20480, 56960, 103520, 103520, 56960, 20480, 78125, 390625, 81920, 298240, 738720, 1018720
Offset: 1
Examples
Some solutions for n=3, k=4 ..0..7..5.10....0..6..2..0....0..7..3.11....0..6..2..8....0..7..1..3 ..5..0..6..5....2..4..6..2....5.11..7..5....5..0..1..2....1..0..7..1 ..6..5..0..7....6..2..0..1...10..5.11.10....6..2..0..1....7..1..3..8 Vertex neighbors: 0 -> 1 2 5 6 7 1 -> 0 2 3 7 8 2 -> 0 1 4 6 8 3 -> 1 7 8 9 11 4 -> 2 6 8 9 10 5 -> 0 6 7 10 11 6 -> 0 2 4 5 10 7 -> 0 1 3 5 11 8 -> 1 2 3 4 9 9 -> 3 4 8 10 11 10 -> 4 5 6 9 11 11 -> 3 5 7 9 10
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
Formula
Empirical for column k:
k=1: a(n) = 5*a(n-1)
k=2: a(n) = 4*a(n-1)
k=3: a(n) = 6*a(n-1) -4*a(n-2) for n>3
k=4: a(n) = 10*a(n-1) -25*a(n-2) +36*a(n-3) -24*a(n-4) +4*a(n-5) for n>6
k=5: [order 12] for n>14
k=6: [order 34] for n>37
k=7: [order 88] for n>93
Comments