A223201 Rolling cube footprints: number of nX7 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal or vertical neighbor moves across a corresponding cube edge.
4096, 11943936, 37222350848, 118404195287040, 379529320596504576, 1220273386789986631680, 3928452022261522225954816, 12653687328474521535529353216, 40767113911221149476183875780608
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..3..0..3..1..3..5....0..3..0..3..0..3..1....0..3..0..3..0..2..0 ..3..0..3..0..2..0..2....3..0..3..0..3..0..2....3..0..3..0..3..5..1 ..0..3..0..3..4..3..0....0..3..0..3..0..3..5....0..3..0..4..0..1..0 Face neighbors: 0,5 -> 1 2 3 4 1,4 -> 0 2 3 5 2,3 -> 0 1 4 5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 7040*a(n-1) -18169856*a(n-2) +23760732160*a(n-3) -18040473255936*a(n-4) +8500736711196672*a(n-5) -2561598209927413760*a(n-6) +496452053123372941312*a(n-7) -61015776557932010799104*a(n-8) +4604307320797904083353600*a(n-9) -203533995411681708710297600*a(n-10) +5009788596483023299982393344*a(n-11) -63134942003554394019855335424*a(n-12) +316912650057057350374175801344*a(n-13)
Comments