A223202 T(n,k)=Rolling cube face footprints: number of nXk 0..5 arrays starting with 0 where 0..5 label faces of a cube and every array movement to a horizontal or vertical neighbor moves across a corresponding cube edge.
1, 4, 4, 16, 48, 16, 64, 576, 576, 64, 256, 6912, 20992, 6912, 256, 1024, 82944, 765952, 765952, 82944, 1024, 4096, 995328, 27951104, 85327872, 27951104, 995328, 4096, 16384, 11943936, 1020002304, 9515827200, 9515827200, 1020002304, 11943936
Offset: 1
Examples
Some solutions for n=3 k=4 ..0..2..4..2....0..1..5..4....0..3..4..2....0..2..0..4....0..2..0..3 ..3..1..2..5....3..5..3..0....3..1..3..5....3..5..2..0....3..5..2..5 ..0..3..1..2....0..2..0..2....0..3..5..4....1..3..5..2....1..2..1..2 Face neighbors: 0,5 -> 1 2 3 4 1,4 -> 0 2 3 5 2,3 -> 0 1 4 5
Links
- R. H. Hardin, Table of n, a(n) for n = 1..364
Crossrefs
Column 1 is A000302(n-1)
Column 2 is 4*12^(k-1)
Formula
Empirical for column k:
k=1: a(n) = 4*a(n-1)
k=2: a(n) = 12*a(n-1)
k=3: a(n) = 40*a(n-1) -128*a(n-2)
k=4: a(n) = 144*a(n-1) -3840*a(n-2) +24576*a(n-3)
k=5: a(n) = 512*a(n-1) -66560*a(n-2) +3014656*a(n-3) -50331648*a(n-4) +268435456*a(n-5)
k=6: [order 7]
k=7: [order 13]
Comments