cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A223204 Rolling icosahedron face footprints: number of n X 3 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or vertical neighbor moves across an icosahedral edge.

Original entry on oeis.org

9, 75, 657, 5763, 50553, 443451, 3889953, 34122675, 299324169, 2625672171, 23032401201, 202040266467, 1772297595801, 15546597829275, 136374785271873, 1196279871788307, 10493769275551017, 92051363736382539, 807474735076340817
Offset: 1

Views

Author

R. H. Hardin, Mar 18 2013

Keywords

Comments

Column 3 of A223209.

Examples

			Some solutions for n=3:
..0..5..0....0..5..0....0..5..7....0..1..0....0..5..9....0..5..7....0..1..4
..5..0..1....5..7..5....5..7..5....1..0..5....5..9..8....2..0..5....1..4.17
..0..5..0....9..5..9....0..5..0....4..1..0....0..5..9....0..1..0....4.17.10
Face neighbors:
0 -> 1 2 5
1 -> 0 4 6
2 -> 0 3 8
3 -> 2 4 16
4 -> 3 1 17
5 -> 0 7 9
6 -> 1 7 10
7 -> 6 5 11
8 -> 2 9 13
9 -> 8 5 14
10 -> 6 12 17
11 -> 7 12 14
12 -> 11 10 19
13 -> 8 15 16
14 -> 9 11 15
15 -> 14 13 19
16 -> 3 13 18
17 -> 4 10 18
18 -> 16 17 19
19 -> 15 18 12
		

Crossrefs

Cf. A223209.

Formula

Empirical: a(n) = 9*a(n-1) - 2*a(n-2).
Conjectures from Colin Barker, Aug 17 2018: (Start)
G.f.: 3*x*(3 - 2*x) / (1 - 9*x + 2*x^2).
a(n) = (3*2^(-1-n)*((9-sqrt(73))^n*(3+sqrt(73)) + (-3+sqrt(73))*(9+sqrt(73))^n)) / sqrt(73).
(End)