A223208 Rolling icosahedron face footprints: number of nX7 0..19 arrays starting with 0 where 0..19 label faces of an icosahedron and every array movement to a horizontal or vertical neighbor moves across an icosahedral edge.
729, 46875, 3889953, 347696019, 31921015497, 2960941376139, 275769851453745, 25725360515161923, 2401334251012194777, 224209069529029889211, 20936162679299127225537, 1955051227721359130017011
Offset: 1
Keywords
Examples
Some solutions for n=3 ..0..5..9..5..9..5..7....0..5..0..2..0..1..4....0..5..0..1..6..1..4 ..5..0..5..0..5..9..5....5..0..2..0..5..0..1....5..0..1..0..1..4.17 ..0..5..0..1..0..5..7....0..5..0..5..0..2..0....0..5..0..1..4.17..4 Face neighbors: 0 -> 1 2 5 1 -> 0 4 6 2 -> 0 3 8 3 -> 2 4 16 4 -> 3 1 17 5 -> 0 7 9 6 -> 1 7 10 7 -> 6 5 11 8 -> 2 9 13 9 -> 8 5 14 10 -> 6 12 17 11 -> 7 12 14 12 -> 11 10 19 13 -> 8 15 16 14 -> 9 11 15 15 -> 14 13 19 16 -> 3 13 18 17 -> 4 10 18 18 -> 16 17 19 19 -> 15 18 12
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Formula
Empirical: a(n) = 117*a(n-1) -614*a(n-2) -193608*a(n-3) +4171896*a(n-4) +11415328*a(n-5) -842180224*a(n-6) +3384845504*a(n-7) +50528534400*a(n-8) -356768428544*a(n-9) -786566761984*a(n-10) +10681051645952*a(n-11) -6785526038528*a(n-12) -118510105321472*a(n-13) +197530250887168*a(n-14) +559297782349824*a(n-15) -1309510355714048*a(n-16) -1087672042455040*a(n-17) +3564507406925824*a(n-18) +719985279238144*a(n-19) -4461650060509184*a(n-20) +91947477762048*a(n-21) +2549613680656384*a(n-22) -206006306996224*a(n-23) -619282299879424*a(n-24) +65421579386880*a(n-25) +47138239152128*a(n-26) -8245531901952*a(n-27) +260919263232*a(n-28)
Comments